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Abstract

Poaching is considered a major driver for the popula-
tion drop of key species such as tigers, elephants, and
rhinos, which can be detrimental to whole ecosystems.
While conducting foot patrols is the most commonly
used approach in many countries to prevent poaching,
such patrols often do not make the best use of the lim-
ited patrolling resources.

This paper presents PAWS, a game-theoretic applica-
tion deployed in Southeast Asia for optimizing foot pa-
trols to combat poaching. In this paper, we report on
the significant evolution of PAWS from a proposed de-
cision aid introduced in 2014 to a regularly deployed
application. We outline key technical advances that lead
to PAWS’s regular deployment: (i) incorporating com-
plex topographic features, e.g., ridgelines, in generating
patrol routes; (ii) handling uncertainties in species dis-
tribution (game theoretic payoffs); (iii) ensuring scala-
bility for patrolling large-scale conservation areas with
fine-grained guidance; and (iv) handling complex patrol
scheduling constraints.

Introduction

Poaching is a serious threat to wildlife conservation and can
lead to the extinction of species and destruction of ecosys-
tems. For example, poaching is considered a major driver
(Chapron et al. 2008) of why tigers are now found in less
than 7% of their historical range (Sanderson et al. 2006),
with three out of nine tiger subspecies already extinct (IUCN
2015). As a result, efforts have been made by law enforce-
ment agencies in many countries to protect endangered an-
imals from poaching. The most direct and commonly used
approach is conducting foot patrols. However, given their
limited human resources and the vast area in need of pro-
tection, improving the efficiency of patrols remains a major
challenge.

Game theory has become a well-established paradigm
for addressing complex resource allocation and patrolling
problems in security and sustainability domains. Models
and algorithms have been proposed and studied extensively
in the past decade, forming the general area of “secu-
rity games” (Tambe 2011). Furthermore, several security-
game-based decision support systems have previously been
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successfully deployed in protecting critical infrastructure
such as airports, ports, and metro trains (Pita et al. 2008a;
Shieh et al. 2012; Yin et al. 2012). Inspired by the success of
these deployments, researchers have begun applying game
theory to generating effective patrol strategies in green se-
curity domains such as protecting wildlife (Yang et al. 2014;
Fang, Stone, and Tambe 2015), preventing over-fishing
(Haskell et al. 2014; Qian et al. 2014) and illegal logging
(Johnson, Fang, and Tambe 2012).

Among these prior works, a novel emerging applica-
tion called PAWS (Protection Assistant for Wildlife Secu-
rity) (Yang et al. 2014) was introduced as a game-theoretic
decision-aid to optimize the use of human patrol resources
to combat poaching. PAWS was the first of a new wave of
proposed applications in the subarea now called “green secu-
rity games” (Fang, Stone, and Tambe 2015; Kar et al. 2015).
Specifically, PAWS solves a repeated Stackelberg security
game, where the patrollers (defenders) conduct randomized
patrols against poachers (attackers) while balancing the pri-
orities of different locations with different animal densities.
Despite its promise, the initial PAWS effort did not test the
concept in the field.

This paper reports on PAWS’s significant evolution over
the last two years from a proposed decision aid to a regularly
deployed application. We report on the innovations made in
PAWS and lessons learned from the first tests in Uganda
in Spring 2014, through its continued evolution since then,
to current deployments in Southeast Asia and plans for fu-
ture worldwide deployment. In this process, we have worked
closely with two non-government organizations (Panthera
and Rimba) and incorporated extensive feedback from pro-
fessional patrolling teams. Indeed, the first tests revealed key
shortcomings in PAWS’s initial algorithms and assumptions
(we will henceforth refer to the initial version of PAWS
as PAWS-Initial, and to the version after our enhancement
as PAWS). First, a major limitation was that PAWS-Initial
ignored topographic information. Second, PAWS-Initial as-
sumed animal density and relevant problem features at dif-
ferent locations to be known, ignoring the uncertainty. Third,
PAWS-Initial could not scale to provide detailed patrol routes
in large conservation areas. Finally, PAWS-Initial failed to
consider patrol scheduling constraints.

In this paper, we outline novel research advances which
remedy the aforementioned limitations, making it possible



to deploy PAWS on a regular basis. First, we incorporate
elevation information and land features and use a novel hi-
erarchical modeling approach to building a virtual “street
map” of the conservation area. This virtual “street map”
helps scale-up while providing fine-grained guidance, and
is an innovation that would be useful in many other do-
mains requiring patrolling of large areas. Essentially, the
street map connects the whole conservation area through
easy-to-follow route segments such as ridgelines, streams,
and river banks. The rationale for this comes from the fact
that animals, poachers, and patrollers all use these features
while moving. To address the second and third limitations,
we build on the street map concept with a novel algorithm
that uniquely synthesizes two threads of prior work in the
security games literature; specifically, the new PAWS algo-
rithm handles payoff uncertainty using the concept of min-
imax regret (Nguyen et al. 2015), while simultaneously en-
suring scalability — using our street maps — via the cutting
plane framework (Yang et al. 2013). Finally, we incorporate
into PAWS the ability to address constraints such as patrol
time limits and starting and ending at the base camp. In the
final part of the paper, we provide detailed information about
the regular deployment of PAWS.

Background and Related Work

Criminologists have worked on the problem of combating
poaching, from policy design to illegal trade prevention
(Lemieux 2014). Geographic Information Systems (GIS) ex-
perts (Hamisi 2008) and wildlife management staff (Wato,
Wahungu, and Okello 2006) have carefully studied the iden-
tification of poaching hotspots. In recent years, software
tools such as SMART (SMART 2013) and MIST (Stokes
2010) have been developed to help conservation managers
record data and analyze patrols retrospectively. We work on
a complementary problem of optimizing the patrol planning
of limited security staff in conservation areas.

In optimizing security resource allocation, previous work
on Stackelberg Security Games (SSGs) has led to many suc-
cessfully deployed applications for the security of airports,
ports and flights (Pita et al. 2008b; Fang, Jiang, and Tambe
2013). Based on the early work on SSG, recent work has
focused on green security games (Kar et al. 2015), provid-
ing conceptual advances in integrating learning and plan-
ning (Fang, Stone, and Tambe 2015) and the first applica-
tion to wildlife security PAWS-Initial. PAWS-Initial (Yang et
al. 2014) models the interaction between the patroller (de-
fender) and the poacher (attacker) who places snares in the
conservation area (see Figure 1) as a basic green security
game, i.e., a repeated SSG, where every few months, poach-
ing data is analyzed, and a new SSG is set up enabling im-
proved patrolling strategies. The deployed version of PAWS
adopts this framework.

We provide a brief review of SSGs, using PAWS as a
key example. In SSGs, the defender protects 7" targets from
an adversary by optimally allocating a set of R resources
(R < T) (Pita et al. 2008b). In PAWS, the defender dis-
cretizes the conservation area into a grid, where each grid
cell is viewed as a target for poachers, to be protected by a

Figure 1: A picture of a
snare placed by poachers.

Figure 2: One patrol route
during the test in Uganda.

set of patrollers. The defender’s pure strategy is an assign-
ment of the resources to targets. The defender can choose a
mixed strategy, which is a probability distribution over pure
strategies. The defender strategy can be compactly repre-
sented as a coverage vector ¢ = (c¢;) where ¢; is the cover-
age probability, i.e., the probability that a defender resource
is assigned to be at target ¢ (Korzhyk, Conitzer, and Parr
2010). The adversary observes the defender’s mixed strat-
egy through surveillance and then attacks a target. An attack
could refer to the poacher, a snare, or some other aspect fa-
cilitating poaching (e.g., poaching camp). Each target is as-
sociated with payoff values which indicate the reward and
penalty for the players. If the adversary attacks target ¢, and
1 is protected by the defender, the defender gets reward U,‘fl,i
and the adversary receives penalty Uy ;. Conversely, if not

protected, the defender gets penalty U;f’i and the adversary
receives reward U",. UL, is usually decided by animal den-
sity — higher animal density implies higher payoffs. Given
a defender strategy c and the penalty and reward values, we
can calculate the players’ expected utilities U and U when

target ¢ is attacked accordingly.

In SSGs, the adversary’s behavior model decides his re-
sponse to the defender’s mixed strategy. Past work has of-
ten assumed that the adversary is perfectly rational, choos-
ing a single target with the highest expected utility (Pita et
al. 2008b). PAWS is the first deployed application that re-
laxes this assumption in favor of a bounded rationality model
called SUQR, which models the adversary’s stochastic re-
sponse to defender’s strategy (Nguyen et al. 2013). SUQR
was shown to perform the best in human subject experi-
ments when compared with other models. SUQR predicts
the adversary’s probability of attacking ¢ based on a linear
combination of three key features at the targets, including
the coverage probability ¢;, the attacker’s reward U, and
penalty Uy ;. A set of parameters (w1, w2, ws) are used for
combining the features. They indicate the importance of the
features and can be learned from data.

First Tests and Feedback

We first tested PAWS-Initial (Yang et al. 2014) at Uganda’s
Queen FElizabeth National Park (QENP) for 3 days. Sub-
sequently, with the collaboration of Panthera and Rimba,
we started working in forests in Malaysia since September



(a) Deployed route (b) Patrollers

Figure 3: First 4-day patrol in Malaysia. Figure 3(a) shows
one suggested route (orange straight lines) and the actual pa-
trol track (black line). Figure 3(b) shows the patrollers walk-
ing along the stream during the patrol.

2014'. These protected forests are home to endangered ani-
mals such as the Malayan Tiger and Asian Elephant but are
threatened by poachers. One key difference of this site com-
pared to QENP is that there are large changes in elevation,
and the terrain is much more complex. The first 4-day patrol
in Malaysia was conducted in November 2014. For this test,
we set the value of U?; (input for PAWS-Initial) by aggregat-
ing observation data recorded during April 2014 - Septem-
ber 2014. We first set the importance value of each cell as
a weighted sum of the observed counts of different types of
animals and different human activities. We then dilute the
importance value of available cells to nearby cells by apply-
ing a 5 by 5 Gaussian kernel for a convolution operation so
as to estimate the value for cells with no data recorded.
These initial tests revealed four areas of shortcomings,
which restricted PAWS-Initial from being used regularly and
widely. The first limitation, which was surprising given that
it has received no attention in previous work on security
games, is the critical importance of topographic informa-
tion that was ignored in PAWS-Initial. Topography can af-
fect patrollers’ speed in key ways. For example, lakes are
inaccessible for foot patrols. Not considering such informa-
tion may lead to the failure of completing the patrol route.
Figure 2 shows one patrol route during the test in Uganda.
The suggested route (orange straight line) goes across the
water body (lower right part of figure), and hence the pa-
trollers decided to walk along the water body (black line).
Also, changes in elevation require extra patrol effort and
extreme changes may stop the patrollers from following a
route. For example, in Figure 3(a) [Malaysia], PAWS-Initial
planned a route on a 1km by lkm grid (straight lines), and
suggested that the patrollers walk to the north area (Row 1,
Column 3) from the south side (Row 2, Column 3). How-
ever, such movement was extremely difficult because of the
changes in elevation. So patrollers decided to head towards
the northwest area as the elevation change is more gentle. In
addition, it is necessary to focus on terrain features such as
ridgelines and streams (Figure 3(b)) when planning routes
for three reasons: (i) they are important conduits for cer-
tain mammal species such as tigers; (ii) hence, poachers use

'For the security of animals and patrollers, no latitude/longitude
information is presented in this paper.
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Figure 4: Illustrative examples.

these features for trapping and moving about in general; (iii)
patrollers find it easier to move around here than on slopes.
Figure 4(a) shows a prominent ridgeline.

The second limitation is that PAWS-Initial assumes the
payoff values of the targets — e.g., U;!; — are known and
fixed. In the domain of wildlife protection, there can be un-
certainties due to animal movement and seasonal changes.
Thus, considering payoff uncertainty is necessary for opti-
mizing patrol strategy.

The third limitation is that PAWS-Initial cannot scale
to provide detailed patrol routes in large conservation ar-
eas, which is necessary for successful deployment. Detailed
routes require fine-grained discretization, which leads to an
exponential number of routes in total.

The fourth limitation is that PAWS-Initial considers cov-
ering individual grid cells, but not feasible routes. In prac-
tice, the total patrolling time is limited, and the patrollers
can move to nearby areas. A patrol strategy for implementa-
tion should be in the form of a distribution over feasible pa-
trol routes satisfying these constraints. Without taking these
scheduling (routing) constraints into account, the optimal
coverage probabilities calculated by PAWS-Initial may not
be implementable. Figure 4(b) shows an example area that is
discretized into four cells and the base camp is located in the
upper left cell. There are three available patrol routes, each
protecting two targets. The coverage probabilities shown in
Figure 4(c) cannot be achieved by a randomization over the
three routes because the coverage of the upper left cell (Tar-
get 1) should be no less than the overall coverage of the re-
maining three cells since all routes start from the base camp.

PAWS Overview

Figure 5 provides an overview of the deployed version of
PAWS. PAWS first takes the input data and estimates the an-
imal distribution and human activity distribution. Based on
this information, an SSG based game model is built, and the
patrol strategy is calculated. In wildlife protection, there is
repeated interaction between patrollers and poachers. When
patrollers execute the patrol strategy generated by PAWS
over a period (e.g., three months), more information is col-
lected and can become part of the input in the next round.
PAWS provides significant innovations in addressing the
aforementioned limitations of PAWS-Initial. In building the
game model, PAWS uses a novel hierarchical modeling ap-
proach to building a virtual street map, while incorporating
detailed topographic information. PAWS models the poach-
ers bounded rationality as described by the SUQR model and



Terrain .
> Input [ IieEeR ] [ Patrol Track ] [Observatlon Data}

\ 4

Initial Analysis [

\ 4

Build Game Payoff
Model [Street Map] [ Uncertainty } [

\ 4

| Calculate Patrol
Strategy

Animal Human Activity
Distribution Distribution

Poacher
Behavior Model

Execute and Collect Observations

Route Generation

Figure 5: PAWS Overview

Cutting Plane

considers uncertainty in payoff values. In calculating the pa-
trol strategy, PAWS uses ARROW (Nguyen et al. 2015) al-
gorithm to deal with payoff uncertainty and adopts cutting
plane approach and column generation to address the scala-
bility issue introduced by scheduling constraints.

Input and Initial Analysis

The input information includes contour lines which describe
the elevation, terrain information such as lakes and drainage,
base camp locations, previous observations (animals and hu-
man activities), as well as previous patrol tracks. However,
the point detections of animal and human activity presence
are not likely to be spatially representative. As such, it is
necessary to predict the animal and human activity distri-
bution over the entire study area. To this end, we used: 1)
JAGS (Plummer 2003) to produce a posterior predictive den-
sity raster for tigers (as a target species) derived from a
spatially explicit capture-recapture analysis conducted in a
Bayesian framework; and 2) MaxEnt (Phillips, Anderson,
and Schapire 2006) to create a raster of predicted human ac-
tivity distribution based on meaningful geographical covari-
ates (e.g., distance to water, slope, elevation) in a Maximum
Entropy Modelling framework.

Build Game Model

Based on the input information and the estimated distribu-
tion, we build a game model abstracting the strategic in-
teraction between the patroller and the poacher as an SSG.
Building a game model involves defender action modeling,
adversary action modeling, and payoff modeling. We will
discuss all three parts but emphasize defender action model-
ing since this is one of the major challenges to bring PAWS
to a regularly deployed application. Given the topographic
information, modeling defender actions in PAWS is far more
complex than any other previous security game domain.

Defender Action Modeling Based on the feedback from
the first tests, we aim to provide detailed guidance to the pa-
trollers. If we use a fine-grained grid and treat every fine-
grained grid cell as a target, computing the optimal pa-
trolling strategy is exceptionally computationally challeng-
ing due to the large number of targets and the exponential

Figure 6: KAPs (black) for 2 by 2 grid cells.

number of patrol routes. Therefore, a key novelty of PAWS
is to provide a hierarchical modeling solution, the first such
model in security game research. This hierarchical modeling
approach allows us to attain a good compromise between
scaling up and providing detailed guidance. This approach
would be applicable in many other domains for large open
area patrolling where security games are applicable, not only
other green security games applications, but others including
patrolling of large warehouse areas or large open campuses
via robots or UAVs.

More specifically, we leverage insights from hierarchical
abstraction for heuristic search such as path planning (Botea,
Miiller, and Schaeffer 2004) and apply two levels of dis-
cretization to the conservation area. We first discretize the
conservation area into 1km by 1km Grid Cells and treat ev-
ery grid cell as a target. We further discretize the grid cells
into 50m by 50m Raster Pieces and describe the topographic
information such as elevation in 50m scale. The defender ac-
tions are patrol routes defined over a virtual “street map” —
which is built in the terms of raster pieces while aided by
the grid cells in this abstraction as described below. With
this hierarchical modeling, the model keeps a small number
of targets and reduces the number of patrol routes while al-
lowing for details at the 50m scale.

The street map is a graph consisting of nodes and edges,
where the set of nodes is a small subset of the raster pieces
and edges are sequences of raster pieces linking the nodes.
We denote nodes as Key Access Points (KAPs) and edges
as route segments. The street map not only helps scalability
but also allows us to focus patrolling on preferred terrain fea-
tures such as ridgelines. The street map is built in three steps:
(i) determine the accessibility type for each raster piece, (ii)
define KAPs and (iii) find route segments to link the KAPs.

In the first step, we check the accessibility type of every
raster piece. For example, raster pieces in a lake are inacces-
sible, whereas raster pieces on ridgelines or previous patrol
tracks are easily accessible. Ridgelines and valley lines are
inferred from the contour lines using existing approaches in
hydrology (Tarboton, Bras, and Rodriguez-Iturbe 2007).

The second step is to define a set of KAPs, via which pa-
trols will be routed. We want to build the street map in such
a way that each grid cell can be reached. So we first choose
raster pieces which can serve as entries and exits for the grid
cells as KAPs, i.e., the ones that are on the boundary of grid
cells and are easily accessible according to the accessibility
type calculated in the first step. When there are multiple ad-
jacent raster pieces that are all easily accessible, we add the



midpoint as a KAP. If there are no easily accessible raster
pieces on one side of the boundary, we choose the raster
piece with the lowest slope as a KAP. In addition, we con-
sider existing base camps as KAPs as they are key points in
planning the patroller’s route. We choose additional KAPs
to ensure KAPs on the boundary of adjacent cells are paired.
Figure 6 shows identified KAPs and easily accessible pieces
(black and gray raster pieces respectively).

The last step is to find route segments to connect the
KAPs. Instead of inefficiently finding route segments to con-
nect each pair of KAPs on the map globally, we find route
segments locally for each pair of KAPs within the same
grid cell, which is sufficient to connect all the KAPs. When
finding the route segment, we design a distance measure
which estimates the actual patrol effort and also gives high
priority to the preferred terrain features. The effort needed
for three-dimensional movement can be interpreted as the
equivalent distance on flat terrain. For example, for gen-
tle slopes, equivalent “flat-terrain” distance is obtained by
adding 8km for every lkm of elevation ascent according
to Naismith’s rule (Thompson 2011). In PAWS, we apply
Naismith’s rule with Langmuir corrections (Langmuir 1995)
for gentle slopes (< 20°) and apply Tobler’s hiking speed
function (Tobler 1993) for steep slopes (> 20°). Very steep
slopes (> 30°) are not allowed. We penalize not walking on
preferred terrain features by adding extra distance. Given the
distance measure, the route segment is defined as the short-
est distance path linking two KAPs within the grid cell.

The defender’s pure strategy is defined as a patrol route on
the street map, starting from the base camp, walking along
route segments and ending with base camp, with its total dis-
tance satisfying the patrol distance limit (all measured as the
distance on flat terrain). The patroller confiscates the snares
along the route and thus protects the grid cells. More specif-
ically, if the patroller walks along a route segment which
covers a sufficiently large portion (e.g., 50% of animal dis-
tribution) of a grid cell, the cell is considered to be protected.
The defender’s goal is to find an optimal mixed patrol strat-
egy — a probability distribution over patrol routes.

Poacher Action Modeling and Payoff Modeling The
poacher’s actions are defined over the grid cells to aid scala-
bility. In this game, we assume the poacher can observe the
defender’s mixed strategy and then chooses one target (a grid
cell) and places snares in this target. Following earlier work,
the poacher in this game is assumed to be boundedly ratio-
nal, and his actions can be described by the SUQR model.
Each target is associated with payoff values indicating
the reward and penalty for the patrollers and the poach-
ers. As mentioned earlier, PAWS models a zero-sum game
and the reward for the attacker (and the penalty for the de-
fender) is decided by the animal distribution. However, in
this game model, we need to handle uncertainty in the play-
ers’ payoff values since key domain features such as ani-
mal density which contribute to the payoffs are difficult to
precisely estimate. In addition, seasonal or dynamic ani-
mal migration may lead to payoffs to become uncertain in
the next season. We use intervals to represent payoff un-
certainty in PAWS; the payoffs are known to lie within a

ARROW: compute optimal coverage vec-
tor ¢ given a set of linear constraints S.

Isé e C? 2S=SUs

( )

Y Separation Oracle

Find Cutting Plane: Find a hyperplane
separating ¢ and feasible region C. If exists,
¢ ¢ C and a new constraint s is found.

Route Generation: find routes that
constitute the separation hyperplane.

Figure 7: New integrated algorithm

certain interval whereas the exact values are unknown. In-
terval uncertainty is, in fact, a well-known concept to cap-
ture uncertainty in security games (Nguyen et al. 2014;
2015). We determine the size of the payoff intervals at each
grid cell based on patrollers’ patrol efforts at that cell. If the
patrollers patrol a cell more frequently, there is less uncer-
tainty in the players’ payoffs at that target and thus a smaller
size of the payoff intervals.

Calculate Patrol Strategy

We build on algorithms from the rich security game liter-
ature to optimize the defender strategy. However, we find
that no existing algorithm directly fits our needs as we need
an algorithm that can scale-up to the size of the domain of
interest, where: (i) we must generate patrol routes over the
street map over the entire conservation area region, while
(ii) simultaneously addressing payoff uncertainty and (iii)
bounded rationality of the adversary. While the ARROW
(Nguyen et al. 2015) algorithm allows us to address (ii) and
(iii) together, it cannot handle scale-up over the street map.
Indeed, while the (virtual) street map is of tremendous value
in scaling up as discussed earlier, scaling up given all possi-
ble routes (= 102 routes) on the street map is still a massive
research challenge. We, therefore, integrate ARROW with
another algorithm BLADE (Yang et al. 2013) for addressing
the scalability issue, resulting in a novel algorithm that can
handle all the three aforementioned challenges. The new al-
gorithm is outlined in Figure 7. In the following, we explain
how ARROW and BLADE are adapted and integrated.
ARROW attempts to compute a strategy that is robust
to payoff uncertainty given that poachers’ responses follow
SUQR. The concept of minimizing maximum regret is a
well-known concept in Al for decision making under uncer-
tainty (Wang and Boutilier 2003). ARROW uses the solution
concept of behavioral minimax regret to provide the strategy
that minimizes regret or utility loss for the patrollers in the
presence of payoff uncertainty and bounded rational attack-
ers. In small-scale domains, ARROW could be provided all
the routes (the defender’s pure strategies), on the basis of
which it would calculate the PAWS solution — a distribu-
tion over the routes. Unfortunately, in large scale domains
like ours, enumerating all the routes is infeasible. We must,



therefore, turn to an approach of incremental solution gener-
ation, which is where it interfaces with the BLADE frame-
work.

More specifically, for scalability reasons, ARROW first
generates the robust strategy for the patrollers in the form of
coverage probabilities over the grid cells without considera-
tion of any routes. Similar to BLADE, a separation oracle is
then called to check if the coverage vector is implementable.
If it is implementable, the oracle returns a probability distri-
bution over patrol routes that implements the coverage vec-
tor, which is the desired PAWS solution. If it is not imple-
mentable — see Figure 4(c) for an example of coverage vec-
tor that is not implementable — the oracle returns a constraint
(cutting plane) that informs ARROW why it is not. For the
example in Figure 4(b)-4(c), if ARROW generates a vec-
tor as shown in Figure 4(c), the constraint returned could
be ¢y > Z?:Q ¢; since all implementable coverage vector
should satisfy this constraint. This constraint helps ARROW
refine its solution. The process repeats until the coverage
vector generated by ARROW is implementable.

As described in BLADE (Yang et al. 2013), to avoid enu-
merating all the feasible routes to check whether the cover-
age vector is implementable, the separation oracle iteratively
generate routes until it has just enough routes (usually after
a small number of iterations) to match the coverage vector
probabilities or get the constraint (cutting plane). At each
iteration of Route Generation (shown in the bottom-most
box in Figure 7), the new route is optimized to cover targets
of high value. However, we cannot directly use any exist-
ing algorithm to find the optimal route at each iteration due
to the presence of our street map. But we note similarities
to the well-studied orienteering problem (Vansteenwegen,
Souffriau, and Oudheusden 2011) and exploit the insight of
the S-algorithm for orienteering (Tsiligiridis 1984).

In particular, in this bottom-most box of in Figure 7, to
ensure each route returned is of high quality, we run a lo-
cal search over a large number of routes and return the one
with the highest total value. In every iteration, we start from
the base KAP and choose which KAP to visit next through
a weighted random selection. The next KAP to be visited
can be any KAP on the map, and we assume the patroller
will take the shortest path from the current KAP to the next
KAP. The weight of each candidate KAP is proportional to
the ratio of the additional target value that can be accrued
and distance from current KAP. We set the lower bound of
the weight to be a small positive value to make sure every
feasible route can be chosen with positive probability. The
process continues until the patroller has to go back to the
base to meet the patrol distance limit constraint. Given a
large number of such routes, our algorithm returns a route
close to the optimal solution.

Integrating all these algorithms, PAWS calculates the pa-
trol strategy consisting of a set of patrol routes and the cor-
responding probability for taking them.

Addressing Additional Practical Challenges

We have introduced the technical innovations which lead to
PAWS’s deployment. In addition to these innovations, we

have addressed a number of practical constraints to make
the strategy suggested by PAWS easier to follow by human
patrollers. In this section, we summarize these challenges
and our solutions to them.

First, mountaintops should be considered as key points in
the patrol route. In PAWS, we require the patrollers always
move between KAPs, which are located at the boundary of
the grid cells or the base camps. Therefore, in some sug-
gested patrol routes, the patroller is asked to go to a moun-
taintop and go downhill for a short distance and then back-
track. However, this kind of short downhill followed by re-
turning uphill will annoy the patrollers, and they will natu-
rally ignore the downhill part. We address this problem by
considering mountain tops as KAPs when building the street
map. With these additional KAPs, patrollers are not forced
to take the short downhill unless necessary (i.e., when the
short downhill covers areas with high animal density).

Second, there is a limit on working time in addition to the
limit on walking distance. It takes less time for the patroller
to go to an area and then backtrack than to take a loop even if
the walking distance is the same. The reason is the patrollers
need spend the time to record what they observe, includ-
ing animal signs and human activity signs. If the patrollers
walk along the same ridgeline twice in a day, they only need
to record the signs once. Therefore, in designing the patrol
routes, we should consider the total working time in addi-
tion to the total distance. This is implemented in PAWS by
adding additional constraints in Route Generation.

Third, not all terrain features should be treated in the same
way. In building the street map, we give preference to ter-
rain features like ridgelines by designing a distance mea-
sure which penalizes not walking along the terrain feature.
However, how much priority should be given to the terrain
features depends on the cost of the alternative routes, or
how much easier it is compared to taking other routes. In a
very hilly region of the area where there are large elevation
changes, the patrollers would highly prefer the terrain fea-
tures as it is much more easier to walk along them than tak-
ing an alternative route. On the other hand, if the elevation
change in the region is small, the effort of taking a ridgeline
for unit distance is comparable to that of taking an alterna-
tive route. To differentiate these different cases, we use sec-
ondary derivatives to check how important the ridgeline is.
Instead of penalizing not walking along the terrain features,
we can use a discount factor for taking the preferred route,
and assign a higher discount factor for terrain features with
a higher (regarding absolute value) secondary derivative.

Lastly, additional factors such as slope should be consid-
ered when evaluating the walking effort. In the distance mea-
sure introduced in the previous section, elevation change and
terrain features have been considered, but there are other fac-
tors that contribute to the walking effort. For example, walk-
ing along the contour line will lead to zero elevation change
along the way, but the effort needed highly depends on the
slope. Walking along the hillside of a steep slope takes much
more effort than walking on the flat terrain. Therefore, in the
distance measure, we penalize walking along hillside and
assign a higher penalty factor for a higher slope.



Trading Off Exploration and Exploitation

Building on the PAWS framework, we provide a variation
of PAWS (denoted as PAWS-EVE) which offers the option
of assigning a probability range for selecting an explorative
route. Explorative routes are those which cover a significant
portion of previously unpatrolled land, while exploitative
routes are those which cover a significant portion of land
previously patrolled.

The major advantage of selecting exploitative routes is
that patrollers are familiar with those patrol routes. Having
experience with the routes, patrollers also require less ef-
fort on following the routes as they would with unfamiliar
territory, enabling them to better cover the area they patrol.
Further, the explorative routes may require more effort on
checking the map, finding water refill points, and figuring
out the best way around unexpected obstacles. Some of these
tasks require experienced patrollers and additional equip-
ment which are not available for every patrol. However, if
patrollers were to only take exploitative routes, then poach-
ers would easily be able to observe such a strategy and then
focus on targeting other areas. With the objective of PAWS
to minimize poaching activity, it is necessary to also take
explorative routes. Therefore, offering the option of setting
a probability range for selecting an explorative route would
be helpful for practical use. The range is set before generat-
ing the patrols based on these practical concerns.

In order to implement the functionality of PAWS-EVE, we
modify the previously mentioned separation oracle by intro-
ducing two sets of routes, the explorative set and the ex-
ploitative set. Two new user-defined parameters 6 and ¢ are
introduced and we add two new constraints to make sure the
probability of assigning a patrol route from the explorative
set lies within a § margin of 6. Also, in Route Generation,
we check if adding a route from the explorative set would
improve the solution, and then we also check if adding a
route from the exploitative set would improve the solution.

Deployment and Evaluation

PAWS patrols are now regularly deployed at a conservation
area in Malaysia. This section provides details about the de-
ployment and both subjective and objective evaluations of
PAWS patrols.

PAWS patrol aims to conduct daily patrols from base
camps. Before the patrol starts, PAWS generates the pa-
trol strategy starting from the base camp selected by patrol
team leader. The patrol distance limit considered by PAWS
is 10km per day (equivalent flat terrain). As shown in Ta-
ble 1, this leads to about 9000 raster pieces to be consid-
ered. Thus, it is impossible to consider each raster piece as a
separate target or consider all possible routes over the raster
pieces. With the two-level discretization and the street map,
the problem scale is reduced, with 8.57(= 194.33/22.67)
KAPs and 80 route segments in each grid cell on average,
making the problem manageable. The strategy generated by
PAWS is a set of suggested routes associated with probabil-
ities and the average number of suggested routes associated
with probability > 0.001 is 12.

Each PAWS patrol lasts for 4-5 days and is executed by

Average # of Reachable Raster Pieces 9066.67
Average # of Reachable Grid Cells (Targets) 22.67
Average # of Reachable KAPs 194.33

Table 1: Problem Scale for PAWS Patrols.

Average Trip Length 4.67 Days
Average Number of Patrollers 5
Average Patrol Time Per Day 4.48 hours

Average Patrol Distance Per Day 9.29 km

Table 2: Basic Information of PAWS Patrols.

a team of 3-7 patrollers. The patrol planner will make plans
based on the strategy generated by PAWS. After reaching
the base camp, patrollers execute daily patrols, guided by
PAWS’s patrol routes. Table 2 provides a summary of basic
statistics about the patrols. During the patrol, the patrollers
are equipped with a printed map, a handheld GPS, and data
recording booklet. They detect animal and human activity
signs and record them with detailed comments and photos.
After the patrol, the data manager will put all the information
into a database, including patrol tracks recorded by the hand-
held GPS, and the observations recorded in the log book.

Figure 8 shows various types of signs found during the
patrols. Table 3 summarizes all the observations. These ob-
servations show that there is a serious ongoing threat from
the poachers. Column 2 shows results for all PAWS patrols.
Column 3 shows results for explorative PAWS patrols, the
(partial) patrol routes which go across areas where the pa-
trollers have never been before. To better understand the
numbers, we show in Column 4 the statistics about early-
stage non-PAWS patrols in this conservation area, which
were deployed for tiger survey. Although it is not a fair
comparison as the objectives of the non-PAWS patrols and
PAWS patrols are different, comparing Column 2 and 3 with
Column 4 indicates that PAWS patrols are effective in find-
ing human activity signs and animal signs. Finding the hu-
man activity signs is important to identify hotspots of poach-
ing activity, and patrollers’ presence will deter the poachers.
Animals signs are not directly evaluating PAWS patrols, but
they indicate that PAWS patrols prioritize areas with higher
animal density. Finding these signs is aligned with the goal
of PAWS — combat poaching to save animals — and thus is
a proof for the effectiveness of PAWS. Comparing Column
3 with Column 2, we find the average number of observa-
tions made along the explorative routes is comparable to and
even higher than that of all PAWS patrol routes. The obser-
vations on explorative routes are important as they lead to
a better understanding of the unexplored area. These results
show that PAWS can guide the patrollers towards hotspots
of poaching activity and provide valuable suggestions to the
patrol planners.

Along the way of PAWS deployment, we have received
feedback from patrol planners and patrollers. The patrol
planners mentioned that the top routes in PAWS solution
(routes with the highest probability) come close to an ac-
tual planner’s routes, which shows PAWS can suggest fea-
sible routes and potentially reduce the burden of the plan-
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Figure 8: Various signs recorded during PAWS patrols.

All Explorative Previous
Patrol for
Patrol Type PAWS PAWS Tioer
Patrol Patrol &
Survey
Total Distance (km) 130.11 20.1 624.75
Average # of Human
Activity Signs per km 0.86 1.09 0.57
Avergge # of Animal 041 0.44 018
Signs per km

Table 3: Summary of observations.

ning effort. As we deploy PAWS in the future at other sites,
the cumulative human planners’ effort saved by using PAWS
will be a considerable amount. In addition, patrollers com-
mented that PAWS was able to guide them towards poach-
ing hotspots. The fact that they found multiple human signs
along the explorative PAWS patrol routes makes them be-
lieve that PAWS is good at finding good ridgelines that are
taken by animals and humans. Patrollers and patrol planners
also agree that PAWS generates detailed suggested routes
which can guide the actual patrol. Patrollers commented that
the suggested routes were mostly along the ridgeline, which
is easier to follow, compared with the routes from the first
trial by PAWS-Initial. Figure 9 shows one suggested route
(orange line) and the actual patrol track (black line) during
PAWS patrol in Aug. 2015 (shown on lkm by lkm grid).
Due to the precision of the contour lines we get, we provide
a 50m buffer zone (light orange polygon) around the sug-
gested route (orange line). The patrollers started from the
basecamp (green triangle) and headed to the southeast. The
patrollers mostly followed PAWS’s suggested route, indicat-
ing that the route generated by PAWS is easy to follow (con-
trast with PAWS-Initial as shown in Figure 3(a)). Finally, the
power of randomization in PAWS solution can be expected

Figure 9: One daily PAWS Patrol route in Aug. 2015.

in the long-term.

Lessons Learned

During the development and deployment process, we faced
several challenges, and here we outline some lessons
learned.

First, first-hand immersion in the security environment of
concern is critical to understanding the context and accel-
erating the development process. The authors (from USC
and NTU) intentionally went for patrols in the forest with
the local patrolling team to familiarize themselves with the
area. The first-hand experience confirmed the importance of
ridgelines, as several human and animal signs were found
along the way, and also confirmed that extreme changes in
elevation require a considerable extra effort of the patrollers.
This gave us the insight for building the street map.

Second, visualizing the solution is important for commu-
nication and technology adaptation. When we communicate
with domain experts and human planners, we need to ef-
fectively convey the game-theoretic strategy generated by
PAWS, which is a probability distribution over routes. We
first visualize the routes with probability > 0.01 using Ar-
cGIS so that they can be shown on the topographic map and
the animal distribution map. Then for each route, we pro-
vide detailed information that can assist the human planners’
decision-making. We not only provide basic statistics such
as probability to be taken and total distance, but also esti-
mate the difficulty level for patrol, predict the probability of
finding animals and human signs, and provide an elevation
chart that shows how the elevation changes along the route.
Such information can help planners’ understanding the strat-
egy, and also help the planner assign patrol routes to the right
team of patrollers, as some patrollers may be good at a long
distance walking with flat terrain while others would prefer
short distance hiking with high elevation change.

Third, minimizing the need for extra equipment/effort
would further ease PAWS future deployment, i.e., patrollers
would prefer having a single handheld device for collect-
ing patrol data and displaying suggested patrol routes. If
PAWS routes could be embedded in the software that is al-
ready in use for collecting data in many conservation areas,
e.g., SMART, it would reduce the effort required of planners.
This is one direction for future development.



Summary

PAWS is a first deployed “green security game” applica-
tion to optimize human patrol resources to combat poaching.
We provided key research advances to enable this deploy-
ment; this has provided a practical benefit to patrol planners
and patrollers. The deployment of PAWS patrols will con-
tinue at the site in Malaysia. Panthera has seen the utility
of PAWS, and we are taking steps to expand PAWS to its
other sites. This future expansion and maintenance of PAWS
will be taken over by ARMORWAY (ARMORWAY 2015),
a “security games” company (starting in Spring 2016); AR-
MORWAY has significant experience in supporting security-
games-based software deployments.
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