
Jumanji: The Case for Dynamic NUCA in the Datacenter

Brian C. Schwedock
Carnegie Mellon University
bschwedo@andrew.cmu.edu

Nathan Beckmann
Carnegie Mellon University
beckmann@cs.cmu.edu

Abstract—The datacenter introduces new challenges for com-
puter systems around tail latency and security. This paper argues
that dynamic NUCA techniques are a better solution to these
challenges than prior cache designs. We show that dynamic
NUCA designs can meet tail-latency deadlines with much less
cache space than prior work, and that they also provide a natural
defense against cache attacks. Unfortunately, prior dynamic
NUCAs have missed these opportunities because they focus
exclusively on reducing data movement.

We present Jumanji, a dynamic NUCA technique designed
for tail latency and security. We show that prior last-level
cache designs are vulnerable to new attacks and offer imperfect
performance isolation. Jumanji solves these problems while signif-
icantly improving performance of co-running batch applications.
Moreover, Jumanji only requires lightweight hardware and a few
simple changes to system software, similar to prior D-NUCAs. At
20 cores, Jumanji improves batch weighted speedup by 14% on
average, vs. just 2% for a non-NUCA design with weaker security,
and is within 2% of an idealized design.

Index Terms—Multicore caching, non-uniform cache access
(NUCA), tail latency, hardware security.

I. INTRODUCTION

The datacenter has become the dominant computing en-
vironment for many applications and will remain so for the
foreseeable future. Its massive scale and multi-tenancy intro-
duce new demands that systems were not originally designed
for. Specifically, many datacenter applications are sensitive to
tail latency, not raw computing throughput, since the slowest
request out of many determines end-to-end performance [16].
Simultaneously, multi-tenancy means that applications now
commonly run alongside untrusted applications. Following
several high-profile breaches [42, 44], security has become a
first-order concern for many datacenter customers.

This paper focuses on data movement at the shared last-level
cache (LLC), a major factor in both tail latency and security.
Data movement has a first-order effect on tail latency, as the
time spent accessing data often sets the tail, and on security,
as many attacks target shared state in caches.

The problem: Abundant prior work has tried to address these
challenges, but offers incomplete or unsatisfactory solutions.
Prior work in tail latency meets deadlines by reserving re-
sources for latency-critical applications [12, 51], harming the
performance of co-running “batch” applications without such
deadlines. Prior work in security defends against microarchitec-
tural side channels [42, 44, 45, 47, 65, 71, 83, 87, 91], but leaves
some attacks undefended, harms application performance, or
increases system complexity.

Lat-critThreadCore LLC bank

(a) Jigsaw [6, 8].

Lat-critThreadCore LLC bank

(b) Jumanji.

Fig. 1: Dynamic NUCA has natural advantages in the datacenter
because it meets performance targets with fewer resources and
physically isolates data from attackers. (a) However, Jigsaw, a
state-of-the-art D-NUCA, is oblivious to tail latency and security,
leading to missed deadlines and potential cache side channels.
(b) With simple changes, Jumanji enforces tail-latency deadlines
and defends side channels at similar performance to Jigsaw.

Setting tail latency and security aside, the most successful
data movement techniques exploit the distributed nature of
multicore caches, i.e., non-uniform cache access (NUCA), to
keep data in close physical proximity to cores that access it [2, 6,
8, 23, 61, 79, 80]. Dynamic NUCA (D-NUCA) techniques yield
large improvements in system throughput and energy efficiency.
Unfortunately, prior D-NUCAs focus solely on reducing data
movement, causing them to violate tail-latency deadlines and
expose unnecessary cache side channels. This paper revisits
these techniques to see what they can offer in the datacenter.
Our central message is that, with just a few small changes,
D-NUCA offers a superior solution for both tail latency and
security at the last-level cache.

Prior D-NUCAs ignore tail latency and security
Fig. 1a illustrates how Jigsaw [6, 8], a state-of-the-art D-

NUCA, places data in a multicore LLC. It depicts threads and
data in an 8-core system, using colors to indicate different
processes. Jigsaw tries to minimize overall data movement
(both off-chip cache misses and on-chip network traversals) by
placing applications’ data in nearby LLC banks. We observe
the following pros and cons of prior D-NUCAs:
Tail latency: By intelligently placing data near cores,
D-NUCAs can meet a given performance target while using
fewer resources. This frees up cache banks for other applications
to use. We find that, with the right allocations, D-NUCA
can meet tail-latency deadlines with significantly higher batch
performance than prior techniques.

However, prior D-NUCAs like Jigsaw are oblivious to
applications’ goals (e.g., tail-latency deadlines), so they perform
poorly on latency-critical applications. For example, at low
load, latency-critical applications generate few LLC accesses,



TABLE I: Comparison of Jumanji to prior LLC designs.

Tail latency Security Batch speedup
Pr

io
r

w
or

k Tail-aware [12, 35, 51] 3 7 7
Secure [20, 63, 64, 65] 7 3 7

D-NUCA [6, 8, 93] 7 7 3

Jumanji 3 3 3

so Jigsaw tends to shift resources away from them to reduce
data movement of batch applications. While such decisions
may make sense from a data movement perspective, they cause
latency-critical applications to miss their deadlines, harming
overall system performance. It is therefore inadequate for D-
NUCAs to focus exclusively on data movement—D-NUCAs
must incorporate applications’ goals.

Security: By clustering data near cores, D-NUCA naturally
avoids sharing cache state between applications. As a result, D-
NUCA can offer stronger isolation between applications than
conventional cache partitioning, since data reside in physically
separate cache banks. This makes it difficult for attackers to
observe or interact with victims’ cache accesses, simply because
they do not share any cache with them.

D-NUCAs can thus solve two security flaws with NUCA-
oblivious LLC designs. First, as we show in Sec. VI, LLCs
are vulnerable to timing attacks on shared cache ports. Prior
secure LLC designs do not defend this attack. Second, we show
that standard partitioning defenses offer imperfect performance
isolation due to leakage through the shared cache replacement
policy, and also significantly harm performance by lowering
associativity. D-NUCA avoids all of these problems by placing
untrusted applications’ data in different LLC banks.

Unfortunately, prior D-NUCAs do not specifically target
security, so these benefits so far arise only as a happy accident
and cannot be relied upon by datacenter customers.

Jumanji: Redesigning D-NUCA for tail latency and security

We design a new D-NUCA called Jumanji to capitalize
on the above advantages while addressing the disadvantages.
Fig. 1b shows how Jumanji’s allocations differ from Jigsaw.
Jumanji enforces tail latency by reserving enough cache space
for each latency-critical application to meet its deadlines, using
feedback control [12, 51]. Since data placement significantly
reduces data movement, Jumanji actually meets deadlines with
much less cache space than prior work, freeing cache space
to accelerate batch applications. Jumanji enforces security by
placing data from untrusted applications, e.g., from different
virtual machines (VMs) [45], in different banks, guaranteeing
strong isolation between untrusted applications. Jumanji further
optimizes data placement within each VM’s allocation to
minimize data movement for each application.

Table I compares Jumanji against prior LLC designs in terms
of tail latency, security, and batch performance. Jumanji gets the
best of all worlds: it meets tail-latency deadlines, defends a wide
range of cache attacks, and nearly matches Jigsaw’s speedup.
Jumanji is the only design that meets all of these objectives.
Moreover, Jumanji achieves these benefits by leveraging prior

D-NUCAs to simplify its implementation, requiring only a few,
simple changes in software over Jigsaw.

Contributions
This paper’s message is that D-NUCA offers superior

performance and security for datacenter applications than
existing techniques. Specifically, we contribute the following:
• We present Jumanji, the first D-NUCA designed for tail la-

tency and security. Jumanji achieves these goals with better
performance and energy efficiency than prior solutions.
Moreover, Jumanji is practical, requiring only a few simple
software changes to existing D-NUCAs.

• We show that Jumanji meets tail-latency deadlines with sig-
nificantly less cache capacity than prior work, freeing space
for other applications. As a result, Jumanji significantly
improves batch performance.

• We show that Jumanji offers stronger security than prior
secure LLC designs. We give the first demonstration of an
LLC port attack and of performance leakage in a strictly
partitioned LLC. Jumanji defends all LLC attacks, including
conventional content-based attacks and these new ones, with
much better performance than prior designs.

• We evaluate Jumanji in microarchitectural simulation on
a 20-core multicore system running mixes of batch and
latency-critical applications. We show that Jumanji speeds
up batch applications by 11%–15%, vs. 11%–18% for
Jigsaw and 0%–4% for NUCA-oblivious designs, and that
Jumanji comes within 2% of the batch performance of an
idealized design that eliminates competition between batch
and latency-critical applications.

Road map: Sec. II discusses prior work on NUCA, tail latency,
and security. Sec. III motivates Jumanji with an extended case
study. Sec. IV presents a high-level overview of Jumanji’s
design. Sec. V discusses how Jumanji enforces tail-latency
deadlines, and Sec. VI how Jumanji eliminates cache bank
attacks. Sec. VII gives our experimental methodology, and
Sec. VIII evaluates Jumanji. Finally, Sec. IX concludes.

II. BACKGROUND

A. Data movement and multicore caching

Data movement is more expensive than compute, and is
becoming only more so [15, 39, 76]. This fact has led to a
resurgence in cache research to reduce data movement.
Non-uniform cache access (NUCA): To improve scaling,
large caches are implemented via many smaller cache banks
connected over an on-chip network [40]. Commercial proces-
sors use a “static NUCA” (S-NUCA) design that simply stripes
data across banks. S-NUCA exposes non-uniform latency, but
suffers from a large average distance to data.

Dynamic NUCA designs try to place data closer to cores.
Early D-NUCAs treated LLC banks as a hierarchy [4, 5, 10,
13, 59, 68, 93], e.g., by checking the local bank before a global
“home bank.” In contrast, single-lookup D-NUCAs restrict each
memory address to live at a single LLC bank at a time [2, 6,
11, 14, 23, 33], avoiding LLC directories and multiple lookups.



These D-NUCAs typically control placement at page granularity
and cache page locations in the TLB.

Though single-lookup D-NUCAs originally used the page
table out of convenience, this design lets software control where
data is placed. Software scheduling algorithms can find near-
optimal data placements that would be too expensive to find
in hardware alone [2, 6, 8, 79, 80]. Single-lookup D-NUCAs
thus significantly reduce data movement over other D-NUCAs,
at the cost of modest complexity in the operating system (OS).
Beyond reducing data movement: Applications often care
about objectives other than raw performance or energy effi-
ciency. Hardware alone cannot manage data movement, as only
software knows to optimize for. To achieve a wide range of
application goals, hardware must yield control of the cache to
software. Cache partitioning mechanisms [27, 69, 73, 82] let
systems allocate the shared LLC among applications to manage
tail latency [21, 35, 51], improve fairness [60, 66], eliminate
side channels [45, 65], or minimize data movement [69, 84,
85]. However, these partitioning mechanisms ignore NUCA,
needlessly increasing data movement.
Jumanji vs. prior work on caching: A key insight of this
paper is that, because they place data in software, single-lookup
D-NUCAs can also optimize for high-level objectives like tail
latency and security, while still greatly reducing data movement
vs. cache partitioning techniques. Jumanji is the first D-NUCA
to realize this opportunity. Jumanji thus generalizes prior D-
NUCAs to support modern datacenter workloads.

B. Redesigning systems for tail latency

User-facing applications in the datacenter are increasingly
driving growth in computing [29]. Unlike traditional computer
systems that run scientific, analytic, or other batch workloads,
these user-facing applications care about response latency,
which must be short (e.g., 100 ms) to keep users engaged [16,
75]. Moreover, since serving a request requires completing
many tasks, the overall response latency is set by the longest
of these tasks, making systems sensitive to tail latency.

Prior work has re-designed systems for tail latency in many
ways [3, 18, 56]. Systems minimize power through dynamic
voltage and frequency scaling (DVFS) [26, 34, 50, 51, 52,
86, 92], varying parallelism [22, 62, 67] as load fluctuates,
or finding jobs that can safely run alongside latency-critical
applications [17, 18, 19, 55, 89]. This work is complementary
to Jumanji and falls outside the scope of this paper.
Caching for tail latency: A few systems focus on the effect
of the LLC on tail latency. Ubik [35] partitions the LLC to
safely co-locate batch and latency-critical applications. Similar
to DVFS, Ubik gives idle latency-critical applications minimal
LLC space and “boosts” the allocation once a request arrives.
Since latency-critical applications are mostly idle, Ubik non-
trivially increases batch allocations.

Heracles [51] and Parties [12] control LLC space, core DVFS,
memory bandwidth, and network traffic to meet tail-latency
deadlines. These systems manage resources through feedback
control and partition the LLC using Intel CAT [27] (i.e., way-

partitioning). We compare Jumanji with a similar scheme;
however, we compare them only at the LLC.

Jumanji vs. prior work on tail latency: We echo this broad
body of work in showing that D-NUCA must be designed for
tail latency explicitly; designing for overall system efficiency
is insufficient (Sec. V). Like prior work, Jumanji focuses on
the LLC’s impact on tail latency and uses feedback control.
However, no prior work has considered NUCA, which we show
leaves significant performance on the table.

C. Security and cache attacks

Recent work has demonstrated many microarchitectural
security vulnerabilities. This paper focuses on shared-cache
attacks which allow an attacker either to learn a victim’s
access pattern through side channels [37, 38, 65] or harm
a victim’s performance. Prior work considers content-based
timing side-channel attacks, specifically conflict attacks where
an attacker primes the cache so that a victim’s access will evict
the attacker’s data [46, 64, 88]. The attacker detects what data
the victim accesses by timing its own cache accesses.

Defending conflict attacks: Prior work offers many de-
fenses for conflict attacks [37, 47, 71, 72, 88]. However,
way-partitioning (i.e., Intel CAT [27]) is the simplest and
by far the most common defense. Way-partitioning restricts
different processes to different cache ways, eliminating conflict
attacks. Unfortunately, way-partitioning reduces associativity,
so only a few partitions can be used before performance drops
precipitously. Consequently, prior way-partitioning designs can
only defend a small amount of data, which must be explicitly
designated as sensitive by the OS [41, 45, 83]. Many alternatives
to way-partitioning face similar limitations [43, 49, 90] or do
not guarantee isolation [53, 73, 82].

Other cache attacks: The above techniques address conflict
attacks, but they leave other LLC attacks undefended. In partic-
ular, port attacks exploit shared structures to leak information,
as queueing delay reveals when a victim uses the shared
structure [1, 9]. Caches’ limited ports make them vulnerable
to port attacks, which have been demonstrated in CPU L1
caches [31] and GPUs [32]. In Sec. VI, we demonstrate that
CPU LLCs are also vulnerable to port attacks.

Moreover, we show that way-partitioning offers incomplete
performance isolation due to shared microarchitectural state
in the replacement policy. This allows untrusted processes to
harm a victim’s performance, e.g., by causing missed deadlines.

The only prior defense against these attacks is Ironhide [63].
Ironhide is a secure enclave that splits a multicore into two
clusters of tiles, “trusted” and “untrusted”, and prevents all
resource sharing across them. Ironhide defends LLC attacks,
but it comes at a high price and with some disadvantages. For
example, the enclave approach has limited scalability, since,
e.g., each cluster requires its own memory controller (Ironhide
supports just two clusters). Finally, Ironhide ignores tail latency
and does not optimize data placement within each cluster to
reduce data movement.



VM 3

VM 4

VM 2

VM 1

Lat-critBatch

(a) Workload.

Lat-critLat-crit

Lat-crit Lat-crit

(b) Adaptive [12, 51].

Lat-critLat-crit

Lat-crit Lat-crit

(c) VM-Part [45, 65].

Lat-critLat-crit

Lat-crit Lat-crit

(d) Jigsaw [6, 8].

Lat-critLat-crit

Lat-crit Lat-crit

(e) Jumanji.

Fig. 2: Representative data placements for a workload (a) with four VMs running a mix of latency-critical and batch applications on
different LLC designs. (b) Adaptive dynamically adjusts latency-critical allocations to meet deadlines with minimal LLC space, but
data is far away from threads. (c) VM-Part additionally partitions LLC space between VMs to avoid conflict side-channel attacks,
but is vulnerable to new attacks on other shared cache structures. (d) Jigsaw places data to minimize data movement, ignoring tail
latency and security. And (e) Jumanji, which places data to meet deadlines and defend side channels with minimal data movement.

Out-of-
order core

L1d L1i TLB

L2

VTB

UMON

LLC bank

VC id

Fig. 3: A 20-core system with a distributed LLC (20×1 MB
banks). Jumanji adds simple hardware to control data place-
ment, borrowed from Jigsaw [6, 8]. Green indicates modified
components, and blue indicates new components.

Jumanji vs. prior work on security: Since D-NUCAs
physically separate data into different banks, Jumanji gives
a complete defense against all of the above attacks. Moreover,
we show that Jumanji defends conflict attacks with complete
performance isolation and without the associativity-induced
performance problems of prior partitioning defenses. To the
contrary, Jumanji offers significant performance gains, as we
leverage existing D-NUCAs to minimize data movement while
meeting applications’ tail-latency and security goals.

III. MOTIVATION

System context: Jumanji is focused on the datacenter environ-
ment, where applications often run in virtual machines (VMs) or
containers alongside other untrusted VMs. This multi-tenancy
is important to improve utilization and reduce costs, since
datacenter applications often run at low utilization to keep
queueing low for latency-critical applications [3, 18, 56].

Multi-tenancy causes challenges for performance and security.
Datacenters run a wide range of workloads with different goals
and characteristics, demanding architectures that perform well
in a wide range of scenarios. Co-running VMs can cause
performance interference, particularly at the tail, demanding
effective resource partitioning. Co-running VMs are also
untrusted, demanding robust and universal security.

This paper presents Jumanji, a new D-NUCA that meets all
of these demands in a single, simple design. Fig. 3 shows the
multicore that we consider in this paper: 20 out-of-order cores

share a 20 MB LLC that is distributed into 20 banks over a
mesh network-on-chip (NoC). (See Sec. VII for details.) To this
base multicore, Jumanji adds D-NUCA hardware that controls
where data is placed in the LLC, as detailed in Sec. IV-A.

A. Case study

To see how Jumanji improves upon prior work, we now
consider an extended case study, illustrated in Fig. 2. The
workload is shown in Fig. 2a: four VMs share the 20-core
system, each running one latency-critical application (xapian
from TailBench [36]) and four batch applications (randomly
chosen from SPEC CPU2006); we show that other workloads
yield the same conclusions in Sec. VIII.

To see how different LLC designs behave on this workload,
the remaining plots in Fig. 2 depict where threads and data are
placed in each design. Each VM is represented as a different
color (blue, brown, pink, and green), and applications within
each VM as different shades of this color. Threads are clustered
in quadrants, with latency-critical applications running in the
corners. LLC banks are colored to show where data is placed.
Latency-critical applications are highlighted with a black border.

We consider the following LLC designs:
• Adaptive (Fig. 2b) reserves space in each bank using
way-partitioning [27] and dynamically adjusts the allocations
through feedback control [12, 51]. Adaptive partitions latency-
critical data to guarantee tail latency is kept low, but it does not
partition batch data because doing so lowers LLC associativity.
Note that Adaptive is a static NUCA design (i.e., it spreads
each application’s data across all LLC banks), so data is far
away from cores on average.
• VM-Part (Fig. 2c) is a similar static NUCA design that, in
addition to reserving space for xapian exactly like Adaptive
through feedback control, also partitions batch data from each
VM within each LLC bank. This partitioning defends against
conflict timing attacks (Sec. II-C), but lowers LLC associativity
and thus harms batch performance.
• Jigsaw (Fig. 2d) is a state-of-the-art D-NUCA that minimizes
data movement [6, 8], but ignores tail latency and security.
Jigsaw places data in LLC banks near threads, and partitions
data within each bank for performance isolation.



0 100 200 300 400 500
Time (query)

0

100
Re

sp
on

se
La

te
nc

y 
(m

s)

Adaptive VM-Part Jigsaw Jumanji

(a) Avg end-to-end query latency for 4 xapian instances.

0 100 200 300 400 500
Time (query)

0

2

4

Av
g 

La
t-c

rit
LL

C 
Al

lo
c 

(M
B)

(b) Avg LLC allocation for 4 xapian instances.

0 100 200 300 400 500
Time (query)

0

5

10

15

Po
te

nt
ia

l A
tta

ck
er

s
pe

r L
LC

 A
cc

es
s

(c) Vulnerability to shared-cache-structure attacks (Sec. VI-A).

Fig. 4: How different LLC designs behave over time. All but
Jigsaw meet tail deadlines, but Adaptive and VM-Part need more
space than Jumanji. Jigsaw and Jumanji improve security by
physically isolating VMs’ data.

• Jumanji (Fig. 2e) is our new D-NUCA design that targets
applications’ tail-latency and security goals. Like Adaptive,
Jumanji reserves space for latency-critical applications using
feedback control to meet their deadlines. Like VM-Part, Jumanji
isolates data from different VMs; in fact, Jumanji gets stronger
isolation by never sharing LLC banks across VMs. Like Jigsaw,
Jumanji places data near threads to minimize data movement.
Jumanji meets tail deadlines with much less LLC space,
whereas Jigsaw badly violates deadlines: Fig. 4 quantifies
how each LLC design behaves over time, in terms of tail
latency, LLC space, and security. Fig. 4a shows xapian’s
request latencies. All designs maintain low tail latency, except
for Jigsaw, whose latency grows increasingly large over time.
Fig. 4b explains why by plotting how much LLC space is
reserved for xapian in each design (averaged across VMs).
Unlike the others, Jigsaw gives xapian very little space. This
is because latency-critical applications run at low utilization to
avoid queueing, and thus tend to generate little data movement.
So Jigsaw, which cares only about data movement, tends to de-
prioritize latency-critical applications and allocate them little
LLC space. Jumanji fixes this problem by giving xapian
enough space to keep the tail low. Moreover, Jumanji meets
tail-latency deadlines with less space than Adaptive or VM-Part
because Jumanji places data close to threads, letting a smaller
allocation achieve equivalent performance (see Sec. V-A).
Jumanji improves security by physically separating VMs’
data in distinct LLC banks: Next we consider security. All
designs except for Adaptive partition LLC space among VMs,
and so defend against conventional conflict timing attacks
(Sec. II-C). However, since VM-Part is an S-NUCA design

with limited associativity, it pays for this security with lower
batch performance. This paper also considers an attacker that
observes a victims’ LLC accesses through other shared cache
structures, e.g., cache ports (see Sec. VI-A). For such attacks to
succeed, the attacker only needs to share an LLC bank with the
victim. Fig. 4c quantifies how vulnerable each design is to such
an attack by plotting the number of untrusted applications that
share an LLC bank when a victim accesses it, averaged across
all applications and LLC accesses (higher is worse). Way-
partitioning is no defense against such attacks, so S-NUCA
designs fare badly—all untrusted applications can potentially
observe every access. D-NUCA offers a natural mitigation
against this attack by clustering data near threads. In Jigsaw,
many fewer untrusted applications can observe each access,
but this benefit arises only as a by-product of minimizing data
movement. Jumanji strongly enforces this constraint, never
sharing banks between untrusted VMs, so that no untrusted
application can ever observe an access.

Adaptive VM-Part Jigsaw Jumanji

0

50

100

95
th

 P
er

ce
nt

ile
La

te
nc

y 
(m

s)

(a) Tail latency.

0

5

10

15

Po
te

nt
ia

l A
tta

ck
er

s
pe

r L
LC

 A
cc

es
s

(b) Security.

0

5

10

15

Ba
tc

h 
Sp

ee
du

p 
%

vs
. S

ta
tic

(c) Batch speedup.

Fig. 5: Jumanji meets tail-latency deadlines and defends side
channels much more efficiently than non-NUCA approaches.

Jumanji gets the best of all worlds: Fig. 5 shows end-to-
end results for this case study. Both Adaptive and VM-Part
meet tail-latency deadlines, but get negligible batch speedup.
Jigsaw improves batch performance, but causes unacceptable
tail-latency violations. Jumanji meets tail-latency deadlines,
nearly matches Jigsaw’s speedup, and improves security by
never sharing banks across VMs. Jumanji is thus a superior
design for tail latency and security: it meets deadlines with
better batch performance, while defending more attacks. The
rest of this paper expands on this motivation, describing how
Jumanji works and evaluating it across many applications.

IV. JUMANJI’S DESIGN IN A NUTSHELL

Fig. 6 gives a high-level overview of Jumanji’s design.
Several VMs run in userspace, each with some mix of latency-
critical and batch applications. Latency-critical applications
inform Jumanji’s low-level OS/hypervisor runtime of their tail-
latency requirements and when each request completes, and
all applications inform Jumanji of their “trust domain” (e.g.,
the VM they belong to [45]).

Jumanji has software and hardware components. Jumanji’s
hardware is simple and borrowed from Jigsaw, as described
below. Jumanji’s changes lie in the software layer, where the OS
periodically (every 100 ms) places data to enforce applications’
tail-latency and security goals while minimizing data movement.
Jumanji is designed to be practical by reusing proven techniques
to simplify its design. Jumanji’s placement algorithm has three
broad steps:



Jumanji OS Runtime

Jumanji Hardware VTB (update data 
placement)

Miss curve 
monitors

U
SE

R
 S

PA
C

E

…
VM 2

VM 1

Lat-critBatch

Request
completes

Fe
e

d
b

ac
k 

co
n

tr
o

lle
r

2 Partition banks 
among VMs1 Reserve lat-crit

allocation
3 Optimize batch 

within each VM

Fig. 6: Jumanji periodically reoptimizes data placement to ensure that tail-latency deadlines are met and side channels are eliminated.
1 A feedback controller reserves space for latency-critical applications to meet their deadlines. 2 Data from untrusted applications

is physically separated into different LLC banks. 3 Data placement is optimized within each VM to minimize data movement.

1 Jumanji reserves space for each latency-critical application
in nearby LLC banks, using a feedback controller. This step
ensures tail-latency deadlines are met.

2 Jumanji partitions the remaining LLC banks among VMs.
This step defends against cache attacks while minimizing
off-chip data movement.

3 Jumanji optimizes batch data placement within each VM’s
banks. This step minimizes on-chip data movement.

These steps complete quickly in software, taking a negligible
fraction of system cycles. Once the new allocation is found,
Jumanji installs the new placement in its hardware.

A. Jumanji hardware

Jumanji borrows Jigaw’s D-NUCA hardware without modifi-
cation [6, 8]. For readers unfamiliar with Jigsaw, we now briefly
describe how it works. Fig. 3 depicts the hardware Jumanji
adds to control data placement. Jumanji is a single-lookup
D-NUCA that places data at page granularity (Sec. II-A).
Controlling data placement: Jumanji maps each page to a
virtual cache (VC), a new OS abstraction for managing data
placement. For this paper, it suffices to think of there being one
VC per application [61, 80]. The OS controls page mappings via
the page table, and the TLB is extended to store each page’s
VC id. Each core also contains a virtual-cache translation
buffer (VTB) that determines which LLC bank holds a memory
address for a given VC. Its operation is illustrated in Fig. 7.
The VTB maps a VC id to a placement descriptor, a 128-entry
array of bank ids. The LLC bank is determined by hashing the
address to index into the VC descriptor. Software can therefore
control where each VC is placed in the LLC by setting the
entries in its VC descriptor.
Coherence: Jumanji maintains coherence when pages change
VCs or data placement changes without pausing thread execu-
tion. Each LLC bank walks its array and, in the background,
invalidates lines that have moved. This requires lightweight
hardware; for details, see [6, 8].
Monitoring miss curves: To intelligently place data, Jumanji
needs to know how each VC is accessed. Jumanji profiles this
in hardware through utility monitors (UMONs) [8, 69], which

42

VC ids Placement descriptors
VTB

42

0 1 0 0 2 20…

0xBEEF➔LLC bank 1

0xBEEF

Hash bank id

Fig. 7: The virtual-cache translation buffer (VTB) controls
data placement. Addresses are hashed to index into the VC’s
placement descriptor, yielding the address’s unique LLC location.

sample ≈1% of accesses to determine how many LLC misses
the VC would incur at different allocation sizes.
Hardware overheads: In all, Jumanji adds small hardware
overheads to the baseline multicore. The necessary logic is
simple (e.g., table lookups and hashing), and the area of the
VTB and UMONs are dominated by data arrays, which store
9 KB of state in total (8 KB for UMONs and less than 1 KB for
the VTB). This is less than 1% of the per-tile cache storage.
System hardware changes: To better reflect production sys-
tems, we use way-partitioning [27] and DRRIP replacement [30]
within each LLC bank, instead of Vantage partitioning [73]
and LRU as in Jigsaw’s evaluation. We approximate DRRIP’s
miss curve by taking the convex hull of LRU’s miss curve,
which can be measured much more cheaply [7, 81].

B. OS integration

Software runtime: Jumanji operates as a low-level software
runtime tightly integrated with the VM hypervisor. Every
100 ms, Jumanji’s runtime executes a data placement algorithm
(detailed in Secs. V and VI) to reconfigure all applications’ LLC
allocations and placements. New data placements are installed
by updating each core’s VTB, and allocations within each
bank are enforced through way-partitioning (e.g., Intel CAT).
When threads migrate across cores, Jumanji migrates their LLC
allocations along with the threads, like prior D-NUCAs [8, 23].

Jumanji requires integration with the VM hypervisor to know
which applications run within each VM. This allows Jumanji
to isolate VMs into distinct LLC banks. When launched, new
VMs are provided a small LLC allocation (e.g., one bank)



along with their core(s) until Jumanji’s next reconfiguration
determines their LLC allocation. If VMs exceed the number
of LLC banks, then multiple VMs by necessity must share
an LLC bank, potentially compromising security (Sec. VI-A).
Like other secure designs [63], Jumanji handles this by flushing
the shared cache on context switch—but note that only the
LLC banks shared with the swapped-in VM must be flushed.
Software overheads: Jumanji’s overheads are small. We
measured the execution time for Jumanji’s placement algorithm
across all evaluated experiments. Jumanji’s placement algorithm
runs once every 100 ms and takes 11.9 Mcycles on average. This
corresponds to negligible execution overhead of 0.22% of sys-
tem cycles (= 11.9Mcycles/[20 cores × 100ms × 2.66GHz]),
which only affects batch performance and is included in our
results. More frequent reconfigurations do not improve results.

V. JUMANJI FOR TAIL LATENCY

We first motivate D-NUCA for meeting tail-latency deadlines.
Then we introduce a simple software algorithm which uses
Jumanji’s hardware to manage latency-critical applications more
efficiently than prior, non-NUCA approaches.

A. Motivation: Why D-NUCA for tail latency?

First, we evaluate the effect of D-NUCA on xapian’s tail la-
tency independent of batch applications. Fig. 8 shows xapian’s
tail (95th-percentile) latency when xapian is allocated different
portions of the LLC. The red line shows tail latency when
allocations are set using way-partitioning (i.e., Intel CAT),
which spreads data around all LLC banks. The blue line shows
tail latency when allocations are reserved in the closest LLC
banks. (See Fig. 2b and Fig. 2e.)

0 1 2 3 4
Latency-Critical LLC Allocation (MB)

0

5

10

15

20

25

95
th

-P
er

ce
nt

ile
La

te
nc

y 
(m

s)

Up to 285 ms

S-NUCA
D-NUCA

Fig. 8: How xapian’s tail latency varies with its cache allocation,
with and without D-NUCA. D-NUCA lets xapian meet its tail-
latency deadline with much less LLC space.

Fig. 8 illustrates two important points. First, as found in
prior work [35, 51], cache allocations have a large impact on
tail latency. In S-NUCA, moving from a large allocation to a
small allocation degrades tail latency by up to 50×. This is
because the request arrival rate exceeds the system’s service
rate, yielding unbounded queueing latency.

Second, which has not been considered in prior work, NUCA
also has a large impact on tail latency. When allocations are
placed in nearby banks, xapian can meet tail-latency deadlines
with much less space than in S-NUCA. For example, xapian’s
tail latency with a 2 MB D-NUCA allocation is the same as
3 MB with S-NUCA. D-NUCA thus frees 1 MB for other
applications to use, while saving energy by reducing on-chip

data movement. Tail latency also degrades more gracefully
with D-NUCA than without; D-NUCA’s worst-case latency is
roughly 18× lower than S-NUCA’s.

B. Jumanji’s OS interface

Similar to prior work on tail latency (Sec. II-B), Jumanji
extends the system-call interface to let system administrators
register latency-critical applications and let these applications
report their tail-latency deadline and when requests begin and
complete. Jumanji asks applications to share their performance
goals, not desired resource allocations, to reduce waste from
over-provisioning [18]. Jumanji takes responsibility for allo-
cating resources to meet these goals. Jumanji runs multiple
latency-critical applications together on the same multicore
system and places them as far apart as possible to minimize
LLC contention. A better mapping may be possible [8], but
that is outside the scope of this work.

C. How much LLC space do latency-critical applications need?

Jumanji uses a simple feedback controller to decide how
much of the LLC to allocate to each latency-critical application.
When a request completes, the OS buffers its response latency
(including queueing delay). If it has seen enough requests to
determine the tail latency of recent requests (e.g., 20 requests for
95th-percentile latency), then it updates the feedback controller
with this tail latency and adjusts the application’s allocation.
Listing 1 gives pseudocode for this procedure.

Listing 1: The OS is updated every time a latency-critical request
completes. Once the number of completed requests exceeds a
configurable interval, the feedback controller updates the size
allocated for that latency-critical application.
1 def RequestCompleted(latency,app):
2 latencies[app].append(latency)
3 if latencies[app].size() > configurationInterval:
4 tail = getPercentile(latencies[app],95)
5 latAppSize[app] = ctrl.update(tail,deadline ,app)
6 latencies[app].clear()

The controller increases the application’s allocation by 10%
if tail latency exceeds 95% of the deadline, and reduces it by
10% if it is below 85% of the deadline. If tail latency exceeds
the deadline by 10%, the controller “panics” and boosts the
allocation to a canonical, safe size (one-eighth of the LLC in
our experiments). This boost is necessary because we find that
even very short spikes in queueing latency frequently set the
tail. Alternatively, we could use queue length, but that would
require additional information from applications [34].

Controller sensitivity: Jumanji is minimally sensitive to the
feedback controller’s parameters, letting Jumanji use a single set
of parameters across many different latency-critical applications.
Fig. 9 shows gmean weighted speedup (bars) and tail latency
(lines) for the same workload as Fig. 5, varying one parameter
at a time. The first group varies the target latency range, the
second group varies the panic threshold, and the last group
varies the step size. Results change very little across parameter
values; we use the bolded parameter values in our experiments.



75
-85

%
80

-90
%

85
-95

%

90
-10

0%

95
-10

5%

"Safe" Range

0

5

10

W
ei

gh
te

d 
Sp

ee
du

p 
%

10
0%

10
5%

11
0% 11

5%
12

0%

Panic Limit
+/- 5

%

+/- 
10

%

+/- 1
5%

Change Rate

Ta
il 

La
te

nc
y 

(m
s)

0

1

2

3

4

Fig. 9: Variation in speedup and latency as parameter values for
the feedback controller change. Jumanji is insensitive to values.

Listing 2: Jumanji uses feedback control to determine each
latency-critical application’s allocation, then places this allocation
nearby. All remaining cache space is allocated for batch applica-
tions. Every 100 ms, the OS invokes this algorithm to produce a
matrix allocs[b][a] which denotes how much space application
a is allocated in cache bank b.
1 def LatCritPlacer(bankBalance): # capacity per bank
2 orderedBanks = sortBanksByDistance(latApps)
3 foreach latApp:
4 preferredBanks = orderedBanks[latApp]
5 latAppAlloc = latAppSize[latApp] # Set by feedback
6 while latAppAlloc > 0: # allocate greedily
7 bestBank = preferredBanks.next()
8 allocSize = min(bankBalance[bestBank],latAppAlloc)
9 allocs[bestBank][latApp] = allocSize

10 latAppAlloc -= allocSize
11 return allocs

D. Placing latency-critical allocations in the LLC

Once Jumanji’s software knows how much space to give
each latency-critical application, Jumanji next greedily places
latency-critical allocations to prevent batch applications from
claiming the space. This placement is sub-optimal for batch
throughput, but it ensures that tail-latency deadlines are met.

Listing 2 gives pseudocode for Jumanji’s algorithm. Ju-
manji’s LatCritPlacer first sorts LLC banks for each latency-
critical application by distance from the application according to
the NoC topology. (Jumanji’s algorithms are topology-agnostic.)
Then it simply grabs space in the closest banks until it has
placed all latAppSize’s space. All remaining space is left for
batch applications (we will optimize batch placement below,
ensuring security across VMs).

This greedy algorithm is simple, but surprisingly effective
and leaves little room for improvement. We explored a more
sophisticated (and significantly more complicated) algorithm
that trades cache space between batch and latency-critical
applications after placing batch data, moving batch data closer
while compensating latency-critical applications. We omit this
algorithm because its gains were marginal over the much
simpler LatCritPlacer and because, as Sec. VIII-C shows,
Jumanji’s batch performance with this greedy placement is
already close to an idealized design.

The resulting placement meets tail-latency deadlines, unlike
prior D-NUCAs. However, LatCritPlacer provides no better
security than Jigsaw and has not yet optimized batch data
placement. We address these limitations next.

VI. JUMANJI FOR SECURITY

After ensuring tail-latency deadlines are met, Jumanji defends
against cache attacks. This section describes our threat model,
discusses why D-NUCA improves security, demonstrates a new
LLC attack, and explains how Jumanji defends against LLC
attacks while improving performance.

A. Threat model

Jumanji targets datacenters where a single machine is shared
by several VMs. As in prior work [45], processes in the same
VM trust each other, but not processes from other VMs. VMs
allow users to share hardware, but users expect their data to
be secure from attack by other users.

We are concerned with cache attacks across VMs at the
shared LLC, which is distributed into banks over a NoC. LLC
architecture is complex and shares several components. Fig. 10
illustrates the attacks that we consider.

Shared cache
contents

1

Imperfect 
performance 

isolation

3
Shared 
cache 
ports

2

Cache controller

Fig. 10: The three shared cache components considered in this
paper. 1 : Conflict attacks through shared cache sets. 2 : Port at-
tacks through shared bank ports. And 3 : Imperfect performance
isolation through adaptive cache replacement state.

1 Conflict attacks: An attacker exploits the presence or
absence of data in the shared cache to determine the victim’s
access pattern. This is the standard cache side-channel attack,
which has many defenses (as discussed in Sec. II-C). Jumanji’s
advantage for conflict attacks is that it has much higher effective
associativity than conventional way-partitioning, letting it
defend all data while maintaining high performance.

2 Port attacks: An attacker exploits queueing at shared cache
ports to determine when a victim accesses a cache bank. To
the best of our knowledge, we are the first to demonstrate a
port attack at the LLC. Port attacks are not defended by prior
defenses for conflict attacks.

3 Performance leakage: Finally, we discovered that standard
partitioning-based defenses do not offer strong performance
isolation due to shared microarchitectural state in the replace-
ment policy. This can allow an attacker to, e.g., cause a victim
to miss its tail-latency deadlines.

Note that way-partitioning like Intel CAT [27] does not
defend against attacks 2 and 3 , since it does not separate
data into different banks. The rest of this section explores these
attacks and explains how Jumanji defends them.



B. Demonstration of an LLC port attack

Cache banks have a limited number of ports [40]. Inde-
pendent of attacks that depend on shared state within a bank,
contention on shared cache ports is another timing side channel
that lets an attacker observe a victim’s memory accesses. Since
prior preservation and randomization defenses (Sec. II-C) build
on an S-NUCA baseline, untrusted applications still share LLC
banks, leaving port attacks undefended. Such an attack is noisier
than conflict attacks because it relies on queueing, but we now
show it is feasible on current processors.

Fig. 11 demonstrates an LLC port attack on an Intel Xeon
E5-2650 v4. An attacker thread constantly floods a target
cache bank, using the algorithm in [48], and records the time
to complete every 100 LLC accesses (to amortize timing
overheads). Fig. 11 displays measured access times vs. wall-
clock time, where darker color indicates a larger number of
measurements at that value. Outliers (<0.1% of accesses) are
excluded.

0 100M 200M 300M 400M
Access Count

29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0

At
ta

ck
er

 L
LC

 A
cc

es
s T

im
e

(C
PU

 C
yc

le
s)

Attacker detects victim
accessing target bank!

Victim accesses each other bank

W/O Victim
With Victim

Fig. 11: LLC access times for an attacker flooding a target
LLC bank with accesses (with and without a co-running victim
process). The victim accesses each LLC bank, causing 12 spikes
in latency for the attacker. The attacker detects victim accesses
to a target bank by higher access times due to port conflicts.

The victim is a multi-threaded process (with 3 threads) that,
for demonstration purposes, rotates through flooding each LLC
bank, pausing in between banks for several million cycles.
Since the Xeon E5-2650 has twelve LLC banks, this gives rise
to twelve peaks in Fig. 11. Note that the victim accesses a
different cache set from the attacker to guarantee that contention
does not occur from the cache contents.

Fig. 11 shows that latency increases whenever the victim is
active due to NoC contention, but delay is noticeably higher
when the victim accesses the same bank as the attacker (avg.
time > 32 cycles). This result is clear and consistent across
runs, demonstrating that port attacks are viable at the LLC.
Such port contention could be realized in practice through
microarchitectural replay attacks [78], frequent coherence
misses to shared data among victims, or frequent evictions
if the victim has a small LLC partition.

C. Performance leakage and degradation in way-partitioning

Way-partioning is the most common defense against LLC
attacks. Here we briefly discuss some additional limitations
of way-partitioning as an LLC defense, which Jumanji solves

“for free” (i.e., at no performance loss or added complexity)
while defending port attacks.
Performance leakage, even with partitioning: Modern, adap-
tive cache replacement policies dynamically switch policies
using set-dueling [30, 70]. Since set-dueling chooses between
policies at cache-bank granularity, all applications accessing
a bank both influence which policy is used and are impacted
by the chosen policy, regardless of partitioning mechanisms.
Hence, interactions between processes in set-dueling’s shared
counters can let VMs affect each others’ performance even
when the VMs are isolated into partitions.

0 80 160
Latency App

0.8

0.9

1.0

1.1

No
rm

al
ize

d
Ta

il 
La

te
nc

y

Way Partitioning Jumanji

Fig. 12: Tail-latency distri-
bution for four instances
of img-dnn when run
alongside 40 batch mixes
with a fixed LLC parti-
tion.

Fig. 12 demonstrates the im-
pact of this performance leakage.
img-dnn, a latency-critical appli-
cation from Tailbench [36], is run
alongside different mixes of batch
applications with DRRIP replace-
ment [30]. The red line plots
tail latency, normalized to img-dnn
running alone, on S-NUCA with a
2.5 MB fixed LLC partition, sorted
from best to worst for 40 random
mixes of SPEC CPU2006 applica-
tions. For each mix, img-dnn has
the same, static LLC partition, yet
its tail latency varies significantly

depending on the co-running batch applications. The result is
tail-latency violations, sometimes exceeding 10%.

In contrast, the blue line plots tail latency when img-dnn is
allocated the two closest 1 MB banks (like Jumanji with a fixed
allocation). Tail latency is stable, independent of co-running
batch applications, and 20% lower than S-NUCA, even with a
smaller partition.
Universal defense of conflict attacks at high performance:
Like prior work (Sec. II-C), Jumanji defends against conflict
attacks by partitioning the cache. However, there is a major
difference between Jumanji and prior defenses: Jumanji is not
limited by associativity, so it can easily protect all applications’
data while maintaining high performance.

This is a consequence of how D-NUCAs place data across
all banks: In a 20-core system with highly associative, 32-way
LLC banks, conventional way-partitioning limits applications
to 1 or 2 ways when each core is given its own partition.
As a result, prior work requires the OS to designate one
or a few applications as security-sensitive, and only defends
their data [41, 45]. This security model is inadequate in the
datacenter, where no customer wants to be the one left with
poor security.

Jumanji instead places data across all banks, giving
20 banks × 32 ways/bank = 640 ways to partition among
applications. Jumanji can thus afford to give each application
its own partition while maintaining high associativity.

D. Jumanji: Defending all LLC attacks at high performance

The message of the discussion thus far is that it is unwise
for untrusted applications to share LLC banks. LLC banks



contain many architectural and microarchitectural components,
which expose a large attack surface when shared among
untrusted processes. Isolating VMs into separate cache banks
protects against all bank attacks and mitigates uncontrollable
performance impacts. However, though D-NUCA has natural
advantages as an LLC defense mechanism, prior D-NUCAs
only realize these advantages heuristically.

Listing 3: Jumanji’s D-NUCA data-placement algorithm first
reserves space for latency-critical applications to meet deadlines,
then allocates entire banks among VMs to defend against cache
attacks. Finally, it uses Jigsaw’s data-placement algorithm to
optimize batch applications within each VM.
1 def JumanjiPlacer(bankBalance): # capacity per bank
2 latAppAllocs = LatCritPlacer(bankBalance)
3 batchBalance = sum(bankBalance) - sum(latAppAllocs)
4 vmCurves = CalculateMissCurve(VMs)
5 sizeOfVMs = JumanjiLookahead(batchBalance ,vmCurves,

latAppAllocs)
6 foreach VM:
7 sizeofVMs[VM] += latAppAllocs[VM]
8 while VMs not all placed:
9 AllocatePreferredBankToNextVM()

10 foreach VM:
11 allocs[VM] = latAppAllocs[VM]
12 allocs[VM] += Jigsaw(batchApps[VM])
13 return allocs

Jumanji’s approach: Jumanji improves prior D-NUCAs to
completely defend LLC attacks while maintaining high perfor-
mance. Jumanji defends these attacks by preventing untrusted
applications (e.g., from different VMs) from sharing banks.

We propose the JumanjiPlacer, which guarantees bank iso-
lation between VMs, and efficiently meets tail-latency deadlines
by building on LatCritPlacer (Listing 2). Jumanji achieves
these benefits through a two-tiered placement algorithm which
only allows shared banks between applications in the same
VM, as shown in Listing 3.
JumanjiPlacer starts by calling LatCritPlacer to ob-

tain the allocations for latency-critical applications. Next, it
computes a combined miss-rate curve for each VM’s batch
applications using the model in [61, Appendix B]. Remaining
LLC capacity is then divided among batch applications using
a slightly modified version of the Lookahead algorithm [69]
that guarantees each VM gets a bank-granular allocation. For
example, if a latency-critical application needs 1.3 LLC banks,
then JumanjiLookahead will allocate batch applications in
the same VM either 0.7, 1.7, 2.7, . . . , or 18.7 banks so that
the total LLC space allocated to the VM is a whole number.

Jumanji next places allocations in banks. Jumanji prior-
itizes meeting tail-latency deadlines over batch data move-
ment by starting with the latency-critical allocations from
LatCritPlacer. JumanjiPlacer assigns remaining banks
in a round-robin fashion, letting each VM take the closest
remaining bank (according to NoC topology).

Finally, Jumanji optimizes batch data placement within each
VM. To do this, Jumanji simply calls Jigsaw’s batch placement
algorithm within each VM’s allocation (Listing 3, line 12).

Putting it all together: Jumanji guarantees that latency-critical
applications meet their deadlines by reserving them space in the
LLC, and then partitions LLC banks across VMs to avoid new

Cores 20 cores, x86-64 ISA, 2.66 GHz OOO Nehalem [77]

L1 caches
32 KB, 8-way set-associative, split data and instruction
caches, 3-cycle latency

L2 caches
128 KB private per-core, 8-way set-associative, inclusive,
6-cycle latency

Coherence MESI, 64 B lines, no silent drops; sequential consistency

Last-level
cache

20 MB shared LLC, 5×4 1 MB banks; 32-way
set-associative, 13-cycle bank latency; mesh NoC, 128-bit
flits and links, X-Y routing, 2-cycle pipelined routers,
1-cycle links

Memory 4 memory controllers at chip corners; 120-cycle latency

TABLE II: System parameters in our experimental evaluation.

security threats that we identify. With these simple software
changes, Jumanji generalizes Jigsaw to support the needs of
modern datacenter applications.

VII. METHODOLOGY

We evaluate Jumanji through detailed microarchitectural
simulation using ZSim [74]. Our experimental methodology is
similar to prior work [35, 79] and is detailed below.
System: Parameters are shown in Table II. We model a 20-
core system with a 20 MB shared LLC, with out-of-order cores
modeled on Nehalem [77]. We focus on data placement in the
LLC, which is distributed into 20 banks connected by a 5×4
mesh. NoC delays are taken from prior work [23, 24, 54, 79].
Each LLC bank uses way-partitioning (i.e., Intel CAT [27]) and
DRRIP replacement [30]. Main memory models bandwidth
partitioning with fixed latency [28, 51].
Applications: We use latency-critical applications from Tail-
bench [36] and batch applications from SPEC CPU2006. Each
experiment runs four latency-critical applications with a ran-
dom mix of sixteen SPEC applications.1 The latency-critical
applications evaluated are masstree, xapian, img-dnn, silo,
and moses. Tailbench integrates a client and server together
in one process. The client issues a stream of requests with
exponentially distributed interarrival times at a given rate [57,
58]. We run experiments with both (i) random mixes of multiple
latency-critical applications and (ii) multiple instances of the
same latency-critical application.
VM environment: Except where stated otherwise, we consider
a datacenter scenario where four VMs share the resources of
a single system. Each VM occupies five cores in one corner
of the chip and runs one latency-critical application and four
batch SPEC applications. All applications within a VM trust
each other, and all applications from other VMs are untrusted.
Security metrics: We report vulnerability to port attacks by
computing the average number of potential attackers per LLC
access, as in Fig. 4c. Specifically, for a single LLC access, we
calculate the average number of applications from other VMs
which occupy any space in the LLC bank being accessed, and
then average across all LLC accesses.
Performance metrics: We measure 95th-percentile latency for
Tailbench applications and weighted speedup for batch applica-

1SPEC applications are chosen from 401, 403, 410, 429, 433, 434, 436,
437, 454, 459, 462, 470, 471, 473, 482, and 483.



QPS Low High Num. queries

masstree 300 1475 3000
xapian 130 570 1500
img-dnn 28 135 350
silo 375 1750 3500
moses 34 155 300

TABLE III: Workload config. for latency-critical applications.

tions. (Higher latency percentiles would require prohibitively
long simulations.) We compute weighted speedup using a
fixed-work methodology similar to FIESTA [25]: we profile
how many instructions each SPEC application completes in
15 B instructions when running in isolation and run all programs
until all finish. We profile the latency-critical applications to
determine request interarrival rates at low (10%) and high (50%)
load, shown in Table III. For all experiments, the deadline for a
latency-critical application is determined by the 95th percentile
tail latency when the application is run in isolation on high load
with four cache ways using way-partitioning. This corresponds
to allocating the four latency-critical applications half of the
LLC.
LLC designs: We primarily compare the four designs already
introduced in Sec. III:
1) Adaptive: an S-NUCA design that tunes the latency-critical

allocation via feedback control.
2) VM-Part: an S-NUCA design that additionally partitions

VMs’ batch data to defend (only) conflict attacks.
3) Jigsaw: a D-NUCA that minimizes data movement, but

ignores tail latency and security.
4) Jumanji: our proposed D-NUCA that meets tail-latency

deadlines, defends all LLC attacks, and minimizes data
movement.

We additionally consider other configurations of Jumanji as
sensitivity studies, described in context below. All designs are
normalized to a naïve Static allocation, where each latency-
critical application is simply allocated four ways in the LLC
and the sixteen batch applications share all remaining ways.

VIII. EVALUATION

This section evaluates Jumanji to show the following:
1) Jumanji consistently meets tail-latency deadlines, whereas

prior D-NUCAs do not.
2) Jumanji completely defends against port attacks and per-

formance leakage, unlike most prior secure cache designs.
3) Jumanji significantly reduces data movement over prior

S-NUCA designs for tail latency and security.
4) Jumanji gets similar batch speedup to Jigsaw and is close

to an idealized batch placement.
5) Jumanji’s performance scales well with number of VMs.

A. Security vulnerability

Jumanji fully defends LLC attacks: Port attacks and perfor-
mance leakage are both a consequence of untrusted processes
sharing cache banks. S-NUCA way-partitioning, like Intel
CAT [27], only defends against conflict attacks. Since Adaptive
and VM-Part allocate space for every process in every LLC

0

5

10

15

Po
te

nt
ia

l A
tta

ck
er

s
pe

r L
LC

 A
cc

es
s

Adaptive
VM-Part

Jigsaw
Jumanji

Fig. 14: Each LLC design’s vul-
nerability to port attacks, aver-
aged over all experiments.

bank, they are both fully
susceptible to these attacks.
Fig. 14 shows this vulnerabil-
ity, plotting the average num-
ber of untrusted processes
sharing a bank when a victim
accesses it. All LLC accesses
with Adaptive and VM-Part
have 15 potential attackers—
i.e., all untrusted applications
are potential attackers.

Jigsaw heuristically mitigates port attacks, and has just 0.63
potential attackers per access on average. However, heuristic
mitigations are unreliable. Jumanji’s placement algorithm
isolates VMs into separate banks, giving a complete defense
against both port attacks and performance leakage.

B. Tail latency and batch speedup

Jumanji meets deadlines with minimal data movement:
Fig. 13 shows the normalized tail latency and gmean batch
weighted speedup results for each policy when running copies
of one latency-critical application or a random mix of latency-
critical applications. These box-and-whisker plots show the
distribution of tail latency and weighted speedup (both nor-
malized to Static) over all batch workload mixes (see caption
for details). Fig. 13 shows that all tail-latency-aware policies
(Adaptive, VM-Part, and Jumanji) meet tail-latency deadlines,
with rare exceptions. On the other hand, Jigsaw massively
violates deadlines (by up to 465× on xapian and 151× on
Mixed). Even at low load, when latency-critical applications
need minimal space, Jigsaw still violates deadlines for Xapian
and Mixed. Additionally, Jigsaw sometimes overprovisions
latency-critical applications (e.g., masstree and silo at high
load), unnecessarily harming batch applications.
Jumanji accelerates batch significantly: Fig. 13 further
shows that the D-NUCAs (Jumanji and Jigsaw) significantly
accelerate batch workloads. The speedup graphs show the
distribution of gmean speedup for batch applications in each
workload mix compared to Static. Jumanji improves batch
weighted speedup by 11%–15%, and Jigsaw improves speedup
by 11%–18%. Jumanji does not quite match Jigsaw because
it (correctly) reserves LLC space so that latency-critical
applications meet their deadlines, whereas Jigsaw does not.

Adaptive and VM-Part barely improve batch weighted
speedup, with max gmean speedups of 4% and 3%. The S-
NUCAs do not perform well because, although they can give
space to batch applications in periods of low load, they must
take this space back when load increases. There is little net
benefit except when latency-critical applications are grossly
over-provisioned.
Jumanji supports multiple different latency-critical appli-
cations: Prior 20-core results evaluated multiple instances
of the same latency-critical application. Fig. 13 also shows
that Jumanji meets deadlines when running mixes of different
applications, whereas Jigsaw violates deadlines for one-third of



Adaptive VM-Part Jigsaw Jumanji

Masstree0

1

2

3

4

5

No
rm

al
ize

d 
Ta

il 
La

te
nc

y

Xapian Img-dnn Silo Moses Mixed

Up to 465 Up to 151

(a) Normalized tail latency, high load QPS (lower is better).

Masstree
10

0

10

20

W
ei

gh
te

d 
Sp

ee
du

p 
%

Xapian Img-dnn Silo Moses Mixed

(b) Gmean weighted batch speedup, high load QPS (higher is better).

Masstree0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d 
Ta

il 
La

te
nc

y

Xapian Img-dnn Silo Moses Mixed

Up to 9

(c) Normalized tail latency, low load QPS.

Masstree

0

5

10

15

20

25

30

W
ei

gh
te

d 
Sp

ee
du

p 
%

Xapian Img-dnn Silo Moses Mixed

(d) Gmean weighted batch speedup, low load QPS.

Fig. 13: Normalized tail latency and gmean batch weighted batch speedup (relative to a naïve static allocation) over 40 random
batch mixes, at high and low latency-critical load. Results are shown as box-and-whisker plots. Boxes show the lower to upper
quartile of values (over 40 workload mixes); whiskers show the furthest data points. This figure summarizes 969 trillion simulated
cycles.

S A V Ji Ju0
50

100
150
200

Da
ta

 M
ov

em
en

t E
ne

rg
y

pe
r I

ns
tru

ct
io

n 
(p

J)

Masstree
S A V Ji Ju
Xapian

S A V Ji Ju
Img-dnn

S A V Ji Ju
Silo

S A V Ji Ju
Moses

S A V Ji Ju
Mixed

L1 L2 LLC bank Net Mem

Fig. 15: Dynamic data movement energy for latency-critical
applications at high load over 40 random batch mixes.
S=Static, A=Adaptive, V=VM-Part, Ji=Jigsaw, Ju=Jumanji. Ju-
manji matches Jigsaw’s data movement reductions without vio-
lating tail-latency deadlines.

applications at high load. Jumanji also manages to achieve 14%
gmean batch speedup over all workload mixes, comparable to
Jigsaw’s 17% gmean speedup, whereas Adaptive and VM-Part
do not even obtain 3% speedup.

Jumanji significantly reduces data movement: Fig. 15 shows
average dynamic data movement energy for each workload at
high load in Fig. 13. Data movement energy is split between
the L1, L2, LLC banks, on-chip network, and memory, using
numbers from prior work [79].

Overall, D-NUCA designs achieve significantly lower data
movement than S-NUCA designs. This is due to fewer memory
accesses from LLC partitioning and fewer network hops
from data placement. Compared to Static, both Jumanji and
Jigsaw reduce average data movement energy by 13% whereas
Adaptive actually increases it by 0.1%, and VM-Part also
increases it by 2.4% (both due to extra LLC misses from
limited associativity in way-partitioning).

C. Sensitivity studies

Jumanji defends cache attacks at low cost: Fig. 16 shows
that Jumanji’s bank-isolation defense against LLC attacks costs
little batch performance. We compare Jumanji to “Jumanji:
Insecure”, a version of Jumanji that does not enforce strict
bank isolation but is otherwise identical. Jumanji gets 11%–
15% gmean batch speedup, vs. 14%–19% for Insecure, and is
within 3% of Insecure on average.
Jumanji’s simple algorithms are nearly ideal for batch
speedup: As described in Sec. V, Jumanji prioritizes latency-
critical applications, giving them as much space as they need
and placing their allocations first. One might wonder: how much
does this simple, greedy approach penalize batch applications?

Fig. 16 shows that Jumanji is in fact nearly ideal for batch
speedup. “Jumanji: Ideal Batch” is an infeasible, idealized
design that eliminates competition between latency-critical and
batch applications, letting batch applications get their preferred
data placement. It does this by placing batch and latency-critical
data in separate copies of the LLC, while ensuring the total
capacity allocated to applications does not exceed the original
LLC size. (E.g., if latency-critical applications claim 8 MB, then
it allocates the remaining 12 MB among batch applications but
places these allocations in a copy of the 20 MB LLC reserved
for batch applications.) Latency-critical data is still placed in
nearby banks in their own LLC, maximizing the space available
to batch applications (e.g., Fig. 8). Ideal Batch also isolates
VMs for security. The result is an infeasibly optimal batch
placement unconstrained by any latency-critical placement.

Fig. 16 shows that Jumanji’s simple algorithms are within
2% of Ideal Batch (by gmean batch speedup). Jumanji’s greedy
placement is effective because moving allocations further away



Jumanji Jumanji: Ideal Batch Jumanji: Insecure

Masstree0

5

10

15

20

W
ei

gh
te

d 
Sp

ee
du

p 
%

Xapian Img-dnn Silo Moses Mixed

(a) Gmean weighted batch speedup, high load QPS.

Masstree0

5

10

15

20

25

30

W
ei

gh
te

d 
Sp

ee
du

p 
%

Xapian Img-dnn Silo Moses Mixed

(b) Gmean weighted batch speedup, low load QPS.

Fig. 16: Batch speedup for Jumanji vs. (i) “Jumanji: Insecure”, which does not enforce bank isolation, and (ii) “Jumanji: Ideal
Batch”, which eliminates competition with latency-critical applications during placement. On average, Jumanji is within 3% of
Insecure and within 2% of Ideal Batch.

0

5

10

15

20

W
ei

gh
te

d 
Sp

ee
du

p 
%

4 x (1 LC + 4 B) (i.e., Jumanji)
1 x (4 LC + 16 B) (i.e., J-Insecure)
4 x (1 LC) + 1 x (16 B)
4 x (1 LC) + 2 x (8 B)
4 x (1 LC) + 4 x (4 B)
4 x (1 LC) + 8 x (2 B)

Fig. 17: Jumanji’s batch speedup when varying from 1 VM (all
apps) to 12 VMs. Jumanji scales well as VMs increase.

from latency-critical applications would require giving them
larger allocations to meet deadlines. This is rarely a net win for
batch applications. In fact, we implemented an algorithm that
tries to improve batch placement by trading allocations with
latency-critical applications, similar to [8]. In contrast to [8],
we found that trades were very rare and yielded little speedup:
[8] only tries to reduce data movement, whereas Jumanji must
also meet latency-critical deadlines. This latter requirement
imposes a strict constraint on trades (i.e., they cannot penalize
latency-critical applications), which greatly reduces the number
of beneficial trades. As a result, the algorithm generally behaves
like Jumanji’s simple LatCritPlacer in practice.
Jumanji scales well as the number of VMs increases:
We next consider how Jumanji scales with different VM
configurations, shown in Fig. 17. Results thus far have used
four VMs, each with one latency-critical application and four
batch applications, denoted “4× (1 LC + 4 B)” in the figure.
Fig. 17 explores six different configurations, ranging from a
single VM (i.e., no bank isolation) up to twelve VMs (one per
latency-critical application and per pair of batch applications).
Increasing VMs further causes missed deadlines, since VMs
become restricted to a single LLC bank.

Fig. 17 shows that Jumanji scales well with more VMs.
Jumanji’s gmean speedup varies from 16% with one VM to
13% with twelve VMs. Increasing VMs from four (the default
used in other experiments) to twelve shows no degradation in
batch speedup. Jumanji is effective with many VMs because
placing data in nearby banks is sufficient for most applications,
and Jumanji retains enough flexibility to increase allocations
for the few applications that benefit a lot. While Fig. 17 only
shows results for mixed latency-critical applications at high
load, results are similar for other configurations too.

Jigsaw Jumanji

10

5

10

15

20

25

W
ei

gh
te

d 
Sp

ee
du

p 
%

2
Router Cycle Delay

3

Fig. 18: NoC sensitivity.

NoC sensitivity: Finally, we see
how speedups vary with NoC la-
tency. Results so far use 2-cycle
router delay to model modest NoC
congestion. Fig. 18 shows that Ju-
manji’s speedup on random mixes
increases from 9% to 15% as
routers go from 1 to 3 cycles.
Summary: Jumanji shows that sys-
tems can meet tail-latency deadlines
and defend a wide range of attacks
while improving performance. D-

NUCAs can benefit all applications by placing data in nearby
LLC banks, where it belongs. By considering all applications’
goals, Jumanji excels where previous solutions fail.

IX. CONCLUSION

This paper has shown that D-NUCAs offer significant
advantages in tail latency and security over prior LLC designs.
However, to realize these benefits, D-NUCAs cannot focus
exclusively on reducing data movement. We developed Jumanji,
the first data placement algorithm for tail latency and security,
and demonstrated that it meets tail-latency deadlines and
defends against previously undefended cache attacks, yet still
significantly reduces data movement compared to NUCA-
oblivious designs. Jumanji thus achieves the best of all worlds.
Moreover, Jumanji requires only simple hardware and software,
making it a practical approach to scale future systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Brandon Lucia, Graham
Gobieski, Elliot Lockerman, and Bryan Parno for their feedback.
Brian Schwedock is supported by an NSF Graduate Research
Fellowship, and this work is further supported by NSF grant
CCF-1845986.



REFERENCES

[1] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri,
“Port contention for fun and profit,” in 2019 IEEE Symposium on Security
and Privacy (SP), 2019.

[2] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage capacity
allocation and sharing within large caches,” in Proc. of the 15th IEEE intl.
symp. on High Performance Computer Architecture (Proc. HPCA-15),
2009.

[3] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
IEEE Computer, vol. 40, no. 12, 2007.

[4] B. Beckmann, M. Marty, and D. Wood, “ASR: Adaptive selective
replication for CMP caches,” in Proc. of the 39th intl. symp. on
Microarchitecture, 2006.

[5] B. Beckmann and D. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proc. of the 37th intl. symp. on Microar-
chitecture, 2004.

[6] N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-Defined
Caches,” in Proc. of the 22nd intl. conf. on Parallel Architectures and
Compilation Techniques, 2013.

[7] N. Beckmann and D. Sanchez, “Talus: A simple way to remove cliffs
in cache performance,” in Proc. of the 21st IEEE intl. symp. on High
Performance Computer Architecture (Proc. HPCA-21), 2015.

[8] N. Beckmann, P.-A. Tsai, and D. Sanchez, “Scaling distributed cache
hierarchies through computation and data co-scheduling,” in Proc. of
the 21st IEEE intl. symp. on High Performance Computer Architecture
(Proc. HPCA-21), 2015.

[9] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting specula-
tive execution through port contention,” arXiv preprint arXiv:1903.01843,
2019.

[10] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,”
in Proc. of the 33rd Intl. Symp. on Computer Architecture, 2006.

[11] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in Proc. of
the 15th IEEE intl. symp. on High Performance Computer Architecture
(Proc. HPCA-15), 2009.

[12] S. Chen, C. Delimitrou, and J. F. Martinez, “PARTIES: QoS-Aware
Resource Partitioning for Multiple Interactive Services,” in Proc. of the
24th intl. conf. on Architectural Support for Programming Languages
and Operating Systems (Proc. ASPLOS-XXIV), 2019.

[13] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replication,
communication, and capacity allocation in CMPs,” in Proc. of the 32nd
Intl. Symp. on Computer Architecture, 2005.

[14] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-level page allocation,” in Proc. of the 39th intl. symp. on Microar-
chitecture, 2006.

[15] W. J. Dally, “GPU Computing: To Exascale and Beyond,” in Supercom-
puting ’10, Plenary Talk, 2010.

[16] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, 2013.

[17] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling for
Heterogeneous Datacenters,” in Proc. of the 18th intl. conf. on Archi-
tectural Support for Programming Languages and Operating Systems,
2013.

[18] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware cluster management,” in Proc. of the 19th intl. conf. on Architec-
tural Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XIX), 2014.

[19] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez,
“Kpart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in Proc. of the 24th IEEE intl. symp. on High Performance
Computer Architecture (Proc. HPCA-24), 2018.

[20] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on aes to practice,” in 2011 IEEE Symposium on
Security and Privacy, 2011.

[21] F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing
quality of service in chip multi-processors,” in Proc. of the 40th annual
IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-40), 2007.

[22] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and K. S.
McKinley, “Exploiting heterogeneity for tail latency and energy efficiency,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017, pp. 625–638.

[23] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in Proc. of the 36th Intl. Symp. on Computer Architecture, 2009.

[24] E. Herrero, J. González, and R. Canal, “Elastic cooperative caching: an
autonomous dynamically adaptive memory hierarchy for chip multipro-
cessors,” in Proc. of the 37th annual Intl. Symp. on Computer Architecture
(Proc. ISCA-37), 2010.

[25] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-balanced multi-
program workload methodology,” in MoBS, 2009.

[26] C.-H. Hsu, Y. Zhang, M. Laurenzano, D. Meisner, T. Wenisch, L. Tang,
J. Mars, and R. Dreslinski, “Adrenaline: Pinpointing and reining in tail
queries with quick voltage boosting,” in Proc. of the 21st IEEE intl.
symp. on High Performance Computer Architecture (Proc. HPCA-21),
2015.

[27] Intel corporation, “Improving real-time performance by using cache
allocation technology,” Intel Whitepaper, 2015.

[28] Intel corporation, “Are noisy neighbors keeping in your data center keep-
ing you up at night?” https://www.intel.com/content/dam/www/public/us/
en/documents/white-papers/intel-rdt-infrastructure-paper.pdf, 2018, [On-
line; accessed 5-December-2018].

[29] Intel corporation, “Earnings report,” Q3 2018.
[30] A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer, “High Performance

Cache Replacement Using Re-Reference Interval Prediction (RRIP),” in
Proc. of the 37th annual Intl. Symp. on Computer Architecture, 2010.

[31] Z. H. Jiang and Y. Fei, “A novel cache bank timing attack,” in
2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2017, pp. 139–146.

[32] Z. H. Jiang, Y. Fei, and D. Kaeli, “Exploiting bank conflict-
based side-channel timing leakage of gpus,” ACM Trans. Archit.
Code Optim., vol. 16, no. 4, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3361870

[33] L. Jin and S. Cho, “SOS: A software-oriented distributed shared cache
management approach for chip multiprocessors,” in Proc. of the 18th
Intl. Conf. on Parallel Architectures and Compilation Techniques (Proc.
PACT-18), 2009.

[34] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in Proc.
of the 48th annual IEEE/ACM intl. symp. on Microarchitecture (Proc.
MICRO-48), 2015.

[35] H. Kasture and D. Sanchez, “Ubik: Efficient Cache Sharing with Strict
QoS for Latency-Critical Workloads,” in Proc. of the 19th intl. conf.
on Architectural Support for Programming Languages and Operating
Systems, 2014.

[36] H. Kasture and D. Sanchez, “TailBench: A Benchmark Suite and
Evaluation Methodology for Latency-Critical Applications,” in Proc.
of the IEEE Intl. Symp. on Workload Characterization (Proc. IISWC),
2016.

[37] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2017, pp. 1–6.

[38] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016,
pp. 1–6.

[39] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
2011.

[40] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in Proc. of the 10th
intl. conf. on Architectural Support for Programming Languages and
Operating Systems, 2002.

[41] T. Kim, M. Peinado, and G. Mainar-Ruiz, “{STEALTHMEM}: System-
level protection against cache-based side channel attacks in the cloud,”
in Proc. USENIX Security (USENIX Security-12), 2012.

[42] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[43] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems,” in Proc. of the 14th intl. symp. on High
Performance Computer Architecture, 2008.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-rdt-infrastructure-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-rdt-infrastructure-paper.pdf
https://doi.org/10.1145/3361870


[44] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[45] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proc. of the 22nd IEEE intl. symp. on High Performance
Computer Architecture (Proc. HPCA-22), 2016.

[46] F. Liu and R. B. Lee, “Random fill cache architecture,” in Proc. of the 47th
annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-47),
2014.

[47] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, 2016.

[48] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, 2015.

[49] M. Liu and T. Li, “Optimizing virtual machine consolidation performance
on numa server architecture for cloud workloads,” in Proc. of the 41st
annual Intl. Symp. on Computer Architecture (Proc. ISCA-41), 2014.

[50] D. Lo, L. Cheng, R. Govindaraju, L. Barroso, and C. Kozyrakis, “Towards
energy proportionality for large-scale latency-critical workloads,” in Proc.
of the 41st annual Intl. Symp. on Computer Architecture (Proc. ISCA-41),
2014.

[51] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: improving resource efficiency at scale,” in Proc. of the 42nd
annual Intl. Symp. on Computer Architecture (Proc. ISCA-42), 2015.

[52] J. Lorch and A. Smith, “Improving dynamic voltage scaling algorithms
with PACE,” SIGMETRICS PER, vol. 29, no. 1, 2001.

[53] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared
cache management (PriSM),” in Proc. of the 39th Intl. Symp. on Computer
Architecture, 2012.

[54] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, and B. Grot, “Stretch:
Balancing qos and throughput for colocated server workloads on smt
cores,” in Proc. of the 25th IEEE intl. symp. on High Performance
Computer Architecture (Proc. HPCA-25), 2019.

[55] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proc. of the 44th intl. symp. on Microarchitecture, 2011.

[56] D. Meisner, B. Gold, and T. Wenisch, “PowerNap: eliminating server
idle power,” Proc. of the 14th intl. conf. on Architectural Support for
Programming Languages and Operating Systems, 2009.

[57] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,
“Power management of online data-intensive services,” in Proc. of the
38th annual Intl. Symp. on Computer Architecture (Proc. ISCA-38), 2011.

[58] D. Meisner and T. F. Wenisch, “Stochastic queuing simulation for data
center workloads,” in EXPERT, 2010.

[59] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost adaptive
non-uniform cache architecture,” in Proc. of the 16th intl. symp. on High
Performance Computer Architecture, 2010.

[60] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero,
“FlexDCP: A QoS framework for CMP architectures,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 2, 2009.

[61] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving
dynamic cache management with static data classification,” in Proc. of
the 21st intl. conf. on Architectural Support for Programming Languages
and Operating Systems (Proc. ASPLOS-XXI), 2016.

[62] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster: Hybrid
task manager for latency-critical cloud workloads,” in Proc. of the 23rd
IEEE intl. symp. on High Performance Computer Architecture (Proc.
HPCA-23), 2017.

[63] H. Omar and O. Kahn, “Ironhide:a secure multicore that efficiently
mitigates microarchitecture state attacks for interactive applications,” in
Proc. of the 26th IEEE intl. symp. on High Performance Computer
Architecture (Proc. HPCA-26), 2020.

[64] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” in CryptographersâĂŹ Track at the RSA
Conference. Springer, 2006, pp. 1–20.

[65] D. Page, “Partitioned Cache Architecture as a Side-Channel Defence
Mechanism,” IACR Cryptology ePrint archive, no. 2005/280, 2005.

[66] A. Pan and V. Pai, “Imbalanced cache partitioning for balanced data-
parallel programs,” in Proc. of the 46th annual IEEE/ACM intl. symp.
on Microarchitecture (Proc. MICRO-46), 2013.

[67] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J. Mars,
and L. Tang, “Octopus-man: Qos-driven task management for heteroge-
neous multicores in warehouse-scale computers,” in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium
on. IEEE, 2015, pp. 246–258.

[68] M. Qureshi, “Adaptive Spill-Receive for Robust High-Performance
Caching in CMPs,” in Proc. of the 10th intl. symp. on High-Performance
Computer Architecture, 2009.

[69] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches,” in
Proc. of the 39th annual IEEE/ACM intl. symp. on Microarchitecture,
2006.

[70] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proc. of the 34th annual Intl.
Symp. on Computer Architecture (Proc. ISCA-34), 2007.

[71] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proc. of the 51st annual IEEE/ACM
intl. symp. on Microarchitecture (Proc. MICRO-51), 2018.

[72] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in Proc. of the 46th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-46), 2019.

[73] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-
Grain Cache Partitioning,” in Proc. of the 38th annual Intl. Symp. in
Computer Architecture, 2011.

[74] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” in Proc. of the 40th Intl.
Symp. on Computer Architecture, 2013.

[75] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and HTTP chunking in web search,” in Velocity,
2009.

[76] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in Proc. High Performance Computing for Computational
Science (VECPAR), 2011.

[77] R. Singhal, “Inside intel R© core microarchitecture (nehalem),” in 2008
IEEE Hot Chips 20 Symposium (HCS). IEEE, 2008, pp. 1–25.

[78] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “Microscope: Enabling microarchitectural replay attacks,” in
Proc. of the 46th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-46), 2019.

[79] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-Defined
Cache Hierarchies,” in Proc. of the 44th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-44), 2017.

[80] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Nexus: A New Approach to
Replication in Distributed Shared Caches,” in Proc. of the 26th Intl. Conf.
on Parallel Architectures and Compilation Techniques (Proc. PACT-26),
2017.

[81] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park, “Cache modeling
and optimization using miniature simulations,” in Proc. of USENIX ATC,
2017.

[82] R. Wang and L. Chen, “Futility scaling: High-associativity cache
partitioning,” in Proc. of the 47th annual IEEE/ACM intl. symp. on
Microarchitecture (Proc. MICRO-47), 2014.

[83] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” 2007.

[84] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang, “Dcaps:
Dynamic cache allocation with partial sharing,” in Proc. of the EuroSys
Conf. (Proc. EuroSys), 2018.

[85] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio, and Y. Li,
“dcat: Dynamic cache management for efficient, performance-sensitive
infrastructure-as-a-service,” in Proc. of the EuroSys Conf. (Proc. EuroSys),
2018.

[86] R. Xu, C. Xi, R. Melhem, and D. Moss, “Practical PACE for embedded
systems,” in EMSOFT, 2004.

[87] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
“Invisispec: Making speculative execution invisible in the cache hierarchy,”
in Proc. of the 45th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-45), 2018.

[88] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-aware
cache replacement policy (sharp): Defending against cache-based side
channel attacks,” in Proc. of the 44th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-44), 2017.

[89] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-Flux: Precise online
QoS management for increased utilization in warehouse scale computers,”



in Proc. of the 40th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-40), 2013.

[90] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: a dynamic cache partitioning
system using page coloring,” in Proc. of the 23rd Intl. Conf. on Parallel
Architectures and Compilation Techniques (Proc. PACT-23), 2014.

[91] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protection
for speculatively accessed data,” in Proc. of the 52nd annual IEEE/ACM

intl. symp. on Microarchitecture (Proc. MICRO-52), 2019.

[92] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” in Proc. of the 19th Symp. on
Operating System Principles (Proc. SOSP-19), 2003.

[93] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in Proc. of the
32nd Intl. Symp. on Computer Architecture, 2005.


