
täkō: A Polymorphic Cache Hierarchy for
General-Purpose Optimization of Data Movement

Brian C. Schwedock
Carnegie Mellon University
bschwedo@andrew.cmu.edu

Piratach Yoovidhya
Carnegie Mellon University
piratacy@andrew.cmu.edu

Jennifer Seibert
Binghamton University

jseiber1@binghamton.edu

Nathan Beckmann
Carnegie Mellon University
beckmann@cs.cmu.edu

ABSTRACT
Current systems hide data movement from software behind the
load-store interface. Software’s inability to observe and respond to
data movement is the root cause of many inefficiencies, including
the growing fraction of execution time and energy devoted to data
movement itself. Recent specialized memory-hierarchy designs
prove that large data-movement savings are possible. However,
these designs require custom hardware, raising a large barrier to
their practical adoption.

This paper argues that the hardware-software interface is the
problem, and custom hardware is often unnecessary with an ex-
panded interface. The täkō architecture lets software observe data
movement and interpose when desired. Specifically, caches in täkō
can trigger software callbacks in response to misses, evictions,
and writebacks. Callbacks run on reconfigurable dataflow engines
placed near caches. Five case studies show that this interface covers
a wide range of data-movement features and optimizations. Mi-
croarchitecturally, täkō is similar to recent near-data computing
designs, adding ≈5% area to a baseline multicore. täkō improves per-
formance by 1.4×–4.2×, similar to prior custom hardware designs,
and comes within 1.8% of an idealized implementation.

CCS CONCEPTS
• Computer systems organization→ Processors and memory
architectures.

KEYWORDS
cache hierarchy, data movement, data-centric computing

ACM Reference Format:
Brian C. Schwedock, Piratach Yoovidhya, Jennifer Seibert, and Nathan Beck-
mann. 2022. täkō: A Polymorphic Cache Hierarchy for General-Purpose Op-
timization of Data Movement. In The 49th Annual International Symposium
on Computer Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3470496.3527379

1 INTRODUCTION

Data movement dominates computer systems’ performance
and energy efficiency, and it is only gettingworse over time [30,

53, 55, 76]. Ideally, hardware and software would work together to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527379

Cache MemoryCore

Phantom Data

täkō
Engine

Normal Data
Miss

Data

Load

Load

A
pp

 C
od

e

OnMiss()

App Code

Figure 1: täkō in action: An application registers an address range
whose semantics are defined by software callbacks. These callbacks
run in-cache on programmable engines.

optimize data movement. But mainstream instruction set architec-
tures were designed at a timewhen data movement was inexpensive
and do not emphasize it. In current systems, software reads and
writes data, and hardware decides when and where to move it.

Lacking visibility and control over data movement, software
cannot implement many attractive features or optimizations, and
instead resorts to overly conservative and wasteful solutions. Rec-
ognizing this, there has been a wave of proposals for specialized
memory hierarchies [2, 6–9, 23, 34, 36, 40, 50, 54, 58, 67, 75, 85, 90,
92, 95, 106–108, 118, 127, 131, 135, 136, 146, 149–154]. These designs
are highly effective, often reporting speedups of 2× or more, so
there is clearly potential to massively reduce data movement.

However, the elephant in the room is that adding custom logic to
a general-purpose CPU memory hierarchy is very expensive. Taken
literally, prior work suggests that memory hierarchies should con-
tain an ever-growing number of custom accelerators. But this is
unrealistic because each change to the hardware-software interface
requires large, up-front investment in both hardware and software
to be effective. Most accelerators benefit too few applications to jus-
tify such investment, creating innovation deadlock where large po-
tential speedups cannot be realized in practice. Thus, optimizations
are mostly limited to those that preserve the load-store interface,
such as cache replacement policies or prefetchers.

We argue that the solution to this deadlock is to find a single,
general-purpose architecture that supports a wide variety of data-
movement features and optimizations. Only with wide applicability
can the necessary hardware and software investment be justified.
Additionally, we observe that the key to many prior optimizations
is the ability to perform simple computations in response to data
movement. Hence, the thesis of this paper is that: Architectures
should expose more data movement to software, so that soft-
ware can observe and optimize data movement itself. In other
words, the hardware-software interface is the problem, and often
specialized hardware is not needed with a richer interface. The miss-
ing ingredient is feedback from hardware to software when data

https://doi.org/10.1145/3470496.3527379
https://doi.org/10.1145/3470496.3527379

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

moves. We call this idea a polymorphic cache hierarchy, and we
propose the täkō1 architecture to realize it.

Software control of data movement offers enormous advantages
over a hardware-only approach. Solutions can be better tailored
to individual applications, and development cycles go from years
to days. Although the upfront costs of a new hardware-software
interface are formidable, these costs are paid only once, after which
the marginal cost is reduced by orders of magnitude.

Fig. 1 illustrates täkō in action. Software (e.g., an application,
domain-specific framework, or library) registers a phantom address
rangewith täkō, whose data only lives in-cache and is not backed by
off-chip memory [23]. Instead of fetching data frommemory, misses
to this address range are served by software callbacks. Evictions and
writebacks are handled similarly. These callbacks thus define the
semantics of loads and stores in this address range, letting software
re-purpose the caches as desired.

Like recent near-data computing architectures [6, 83, 105, 142,
150], täkō adds programmable engines near caches to execute call-
backs efficiently. In täkō, engines contain scheduling logic and a
spatial dataflow fabric to run callbacks [43, 59, 103, 132, 138, 143].
With this microarchitectural support, täkō gets close to the perfor-
mance of fully specialized hardware — software programmability
adds little overhead because data movement costs dominate and
callbacks are short. The critical difference from prior work is that
whereas cores invoke tasks in prior near-data architectures, caches
invoke callbacks in täkō. This difference is the crux of the architec-
ture: täkō closes the loop between hardware and software, letting
software finally observe and optimize data movement.

This paper explores the programming interface and system ar-
chitecture of a polymorphic cache hierarchy. täkō’s goal is to enable
optimizations that otherwise require custom hardware, and as such
it currently provides a low-level interface for expert programmers.
This paper focuses on (i) an initial set of callbacks that covers
many, but not all, data-movement features and optimizations; and
(ii) an architecture that implements these callbacks correctly and
efficiently.

Contributions. This paper contributes the following:
• Problem. We identify the need for an improved hardware-
software interface to unlock the performance and efficiency
gains demonstrated by recent specialized cache hierarchies.

• Programming Interface. We propose a simple, flexible, and
effective programming interface to give software visibility
and control over data movement.

• Architecture. We discuss the architectural constraints and
features needed to implement a polymorphic cache hierarchy
correctly and with good performance, with similar hardware
overhead to prior near-data computing architectures.

Summary of results. We present five case studies for täkō, demon-
strating that a general-purpose, programmable data-movement ar-
chitecture can enable new functionality while approaching the
performance of custom hardware.

• In-cache data transformation: täkō enables software-defined
transformations (e.g., decompression)when datamoves.With

1täkō is Japanese for octopus, an animal famous for its intelligence and mimicry. täkō
is also a delicious Mexican-Asian fusion restaurant in Pittsburgh.

good locality, täkō eliminates redundant work to get 2.2×
speedup and 61% energy savings.

• Commutative scatter-updates: täkō implements PHI [95], trans-
forming the caches to use push-based semantics to acceler-
ate commutative scatter-updates in graphs. täkō gets 4.2×
speedup, similar to [95].

• Decoupled graph traversals: täkō implements HATS [92] as
a representative decoupled streaming application. täkō ac-
celerates graph traversals and gets a 43% speedup and 17%
energy savings.

• Transactions on non-volatile memory: täkō’s improved vis-
ibility over data movement eliminates wasteful work in
NVM transactions. If no data is evicted before commit [91],
täkō eliminates journaling overhead and achieves up to 2.1×
speedup and 47% energy savings.

• Detecting cache side-channel attacks: täkō exposes data move-
ment to software, letting applications detect and prevent
cache side-channel attacks [81].

Unlike prior work that requires custom hardware for each feature
and optimization, täkō implements these applications on a single,
general-purpose hardware design. täkō adds just≈5% area overhead,
similar to prior near-data systems. Further, we show that täkō’s
hardware achieves performance within 1.8% of an idealized design.

2 TÄKŌ OVERVIEW
täkō consists of software and hardware components. In software,
täkō’s programming interface gives software visibility and control
over data movement via cache-triggered callbacks. In hardware,
täkō adds architectural support for scheduling and executing call-
backs efficiently near data.

Design rationale. Caches exist to shield systems from expensive
operations. Traditionally, these are reads and writes to larger mem-
ories lower in the cache hierarchy, but in principle they could be
anything. täkō opens up the cache hierarchy by letting software
define what happens on a cache miss and, similarly, what to do
with evictions.

Opening up the cache hierarchy yields two distinct benefits:
(a) Software can leverage existing cache hardware to memoize

expensive computations or buffer updates; and
(b) Software can observe data movement as it happens and in-

terpose as necessary.
Both of these benefits are essential to implementing many data
movement features and optimizations. For example, PHI [95] (a) buffers
graph updates in-cache, and (b) decides on eviction whether to ap-
ply updates in-place or log them (Sec. 8.1).

Interface. Table 1 summarizes täkō’s interface. Callbacks are
registered only on selected addresses, and täkō does not affect
loads and stores to other addresses. onMiss is invoked on cache
misses, letting software fill in the requested cache line. Values are
then cached normally; i.e., cores can read and write them, with
hits handled like any other data. onEviction and onWriteback
handle evictions for clean and dirty data, respectfully.

Architecture. Fig. 2 shows a high-level view of a täkō system. On
top of a baseline, cache-coherent multicore, each tile is augmented

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 1: täkō callback semantics.

Callback Semantics Side effects?∗

onMiss Generates data for requested address. ✗
onEviction Handles eviction of unmodified data. ✗
onWriteback Handles eviction of modified data. ✓

∗ ✗ — can only write local state and/or the affected cache line; see Sec. 4.3.

C
al

lb
ac

k
B

uf
fe

r

Core

L3 Cache Bank

Data Array

Ta
g

A
rr

ay

L2 Engine

L1d L1i

Dataflow Fabric

L1d rTLBTLB

Hardware
Scheduler

Tile

Figure 2: täkō adds programmable engines to each tile of a CMP.
Engines schedule callbacks in response to cache events and execute
them in parallel with conventional threads.

with an engine that contains hardware scheduling logic and a pro-
grammable dataflow fabric to execute callbacks. täkō tracks which
lines have callbacks registered and adds no latency or energy to
traditional loads and stores.

The engine microarchitecture is guided by constraints and char-
acteristics of täkō callbacks. To compete with specialized hardware,
callbacks must exploit memory-level parallelism but should not add
much area. Callbacks tend to be short, re-execute repeatedly, and
perform the same operation across entire cache lines. These consid-
erations led us to a dataflow fabric (to avoid re-fetching the same
instructions) with SIMD functional units (for repeated operations).

Summary. täkō hardware enables visibility and control over data
movement in software via its general-purpose programming inter-
face. The architecture changes only once, up front, rather than for
each individual data-movement feature or optimization. täkō thus
massively reduces the barrier for optimizing data movement.

3 MOTIVATION
Memory hierarchies currently suffer from innovation deadlock:
though specialization offers large benefits, it also requires prohibi-
tively large, up-front investments in both hardware and software.
Without strong demand from software, hardware vendors are re-
luctant to design, verify, and support new features; but without
hardware support, software vendors will not rewrite applications.
As a result, architects are limited to optimizations that preserve the
load-store interface but leave significant gains on the table. The goal
of täkō is to break this deadlock by providing a general-purpose
architecture that frees software to optimize data movement itself.

To motivate täkō, we begin with an example of how polymorphic
cache hierarchies enable data-movement optimization in software.
The purpose of this example is to introduce the basic components
of a polymorphic cache hierarchy. Later case studies will show the
full power of polymorphic cache hierarchies to transform cache
behavior.

1 int64 bases[N / 8] # one base per line, or 8 values
2 int8 deltas[N] # 4-bit exponent, 4-bit mantissa
3
4 total = 0
5
6 for idx in indices:
7 # 1. decompress data
8 base = bases[idx >> 3]
9 delta = deltas[idx]
10 mantissa = delta & 0b1111
11 exponent = delta >> 4
12
13 data = base + (mantissa << exponent)
14
15 # 2. compute average
16 total += data
17
18 avg = total / len(indices)

Figure 3: Example program written in traditional software.

3.1 Example program: Lossy compression.
Prior work has studied many optimizations that transform data as it
moves through the cache, e.g., to compress [9, 36, 90, 106, 107, 118,
136, 146], decrypt [47, 65, 115], prefetch [6, 131, 149], change lay-
out [7, 23], memoize [8, 40, 153, 154], or serialize/de-serialize [108]
data. We motivate täkō by observing how its onMiss callback en-
ables arbitrary data transformations while improving performance,
saving energy, and reducing overall work.

Fig. 3 shows our example program, which computes the average
value of a data set that is stored in an approximate, compressed
format in memory as a base plus offset value, similar to [107]. Un-
like standard compressed caches, this lossy compression cannot
be implemented in hardware without application knowledge [89],
motivating the need for software in the loop. (The details of the
compression algorithm are immaterial; the point is that software
can transform data however it likes.)

This program has two major problems. Cores are inefficient at
data transformations, wasting time and energy [108, 146]. And if
data are re-used, then the program re-executes the same transforma-
tion many times. However, there is currently no good alternative in
software, as alternative implementations waste memory, add data
movement, or perform even more work.

3.2 täkō to the rescue!
Fig. 4 illustrates how täkō solves these problems. Rather than op-
erate on the raw compressed data, the program allocates a new
“phantom” address range for decompressed data. These addresses
only live in the caches and are not backed by physical memory.
The program defines an onMiss callback that decompresses data
whenever a new cache line in the phantom range is requested.

The callbacks are grouped in a Morph object that collects the
data and methods for this polymorphic cache hierarchy — in this
example, a data pointer to the phantom address range and pointers
to the bases and deltas arrays. The onMiss callback takes the
phantom address that triggered the miss and decompresses the
requested data. All operations execute in parallel across the full
cache line, shown in data-parallel pseudocode for brevity.

The modified program first registers the Morph at the private
L2 cache, allocating a phantom address range for it. It then simply
reads the decompressed data and computes the average, now using
even simpler code. Fig. 5 illustrates its execution. The first time the
program reads a phantom address X, there is an L2 miss, which
triggers onMiss on the spatial dataflow engine to decompress the
full cache line. The decompressed line is then cached so that any

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

1 # define new cache semantics to pack data densely
2 class Decompressor extends täkō::Morph:
3 int64* data # actually in base Morph class
4 int64* bases
5 int8* deltas
6
7 # decompress data when it moves into cache
8 void onMiss(int64* phntmAddr):
9 idx = phntmAddr - &this.data[0]
10
11 base = bases[idx >> 3]
12 delta = deltas[idx]
13 mantissa = delta & 0b1111
14 exponent = delta >> 4
15
16 *phntmAddr = base + (mantissa << exponent)

1 int64 bases[N / 8] # one base per line, or 8 values
2 int8 deltas[N] # 4-bit exponent, 4-bit mantissa
3
4 # allocate new phantom address range w callbacks
5 morph = täkō::registerPhantom(
6 Decompressor , PRIVATE, sizeof(int64) * N)
7 morph.bases = bases
8 morph.deltas = deltas
9
10 total = 0
11
12 # code now reads decompressed data directly
13 for idx in indices:
14 total += morph.data[idx]
15
16 avg = total / len(indices)
17
18 morph.unregister()

Figure 4: Pseudocode for the same program in täkō.

Figure 5: Running the exam-
ple program in täkō. Data is
decompressed automatically
on a cache miss, executing
application onMiss code on
a near-cache spatial dataflow
fabric. Decompressed data is
also cached for future use to
eliminate redundant work.

Core

L2LD X1
Miss2

− ld st

ld & ≪ +

≫4

≫3

phntmAddr bases

th
is

.d
at

a
de

lta
s

Engine onMiss(X)3

LD X4

L1d Hit5

Figure 6: Results for the example program. täkō improves perfor-
mance by 2.2× and reduces energy by 61%.

subsequent read of the same line (due to spatial or temporal locality)
is a cache hit, eliminating redundant work from decompressing the
same data many times.

3.3 Results and comparison to prior work.
The täkō version of this program improves performance, saves en-
ergy, and reduces redundant work. Fig. 6 shows results with 32 K
indices for the baseline software implementation, a software ver-
sion that pre-computes the decompressed data in a separate array,
a near-data computing (NDC) implementation, and the täkō ()
implementation. The pre-compute version uses vector instructions
to decompress a full cache line (eight values) at a time. The NDC
version is similar to [83], where the core offloads decompressions

to execute at an L2 engine. Indices are randomly generated follow-
ing a Zipfian distribution [21] over 16 K values. (Full experimental
methodology is in Sec. 7.)

täkō reduces execution time by 55% vs. the software baseline
and by 50% vs. software pre-computation, and it reduces energy
by 61% and 52%, respectively. Moreover, täkō comes within 1.1%
performance and 1.3% energy of an idealized engine with unlimited,
instantaneous, and energy-free compute.

Figure 7: Num. decompressions.

täkō achieves these gains
by memoizing decompressions
of frequently accessed data
(Fig. 7), greatly reducing the
number of total decompres-
sions. Although the pre-compute
version avoids decompressing
the same value multiple times,
it decompresses values which
are never accessed and also allocates memory for the entire de-
compressed array, incurring significant memory overheads. With
täkō, decompression runs on in-cache engines, in parallel with
software threads, similar to prior near-data computing (NDC) ar-
chitectures. However, unlike NDC, täkō triggers computation by
data movement, not from cores: instead of decompressing data ev-
ery time it is requested, täkō decompresses data only on a miss
and caches it thereafter, exploiting locality to eliminate redundant
work [153, 154].

This optimization is not possible in prior NDC systems, which
move computation closer to data but do not improve software’s
visibility over data movement. Fig. 6 shows that NDC actually hurts
performance and energy efficiency on this decompression example.
This is because decompressing at the L2 fails to exploit locality
in the L1s; in other words, offloading computation near-data is
not always an optimization [83]. In contrast, täkō’s cache-triggered
computation gets the best of all worlds by executing computations
near-data, eliminating wasteful work, and preserving locality.

3.4 Discussion.
Decompression is representative of many prior optimizations that
transform data as it moves through the cache hierarchy. Such trans-
formations are easily implemented bywriting onMiss, onEviction,
and onWriteback callbacks. These callbacks are written in soft-
ware and execute on täkō’s general-purpose hardware. Compared
to adding custom hardware, täkō reduces the innovation barrier by
orders of magnitude.

It bears emphasizing that a polymorphic cache hierarchy is not
purely microarchitectural. This is by design: the entire point is to
give software visibility and control over data movement. Callbacks
should be thought of as part of the application code, which exe-
cute as hardware-scheduled threads in parallel with conventional
software threads. A well-structured application splits functionality
appropriately between the two.

Finally, while this example showed how täkō can leverage caches
to eliminate redundant work, täkō is capable of more radical trans-
formations of cache behavior. These will be explored in Sec. 8.

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

1 Morph registerPhantom(morphType , location, size)
2 Morph registerReal(morphType , location, base, bound)
3 void flushData(morph)
4 void unregister(morph)
5
6 class Morph:
7 void* data # base of address range
8 int size # size of address range
9 Morph[] views # engine-local state
10
11 # callbacks
12 void onMiss(addr) # loads
13 void onEviction(addr) # clean evictions
14 void onWriteback(addr) # dirty evictions

Figure 8: täkō’s interface for a polymorphic cache hierarchy.

4 TÄKŌ PROGRAMMING INTERFACE
täkō’s programming interface is designed to let software optimize
data movement in ways that would otherwise require custom hard-
ware. Our goal is to massively reduce implementation effort vs. the
custom hardware required by prior specialized cache hierarchies.
This section describes the interface and restrictions that make it eas-
ier to reason about program behavior. Though täkō is available to
application programmers, it currently targets experts; we envision
täkō code being shipped as part of domain-specific frameworks or
libraries.

Overview. täkō breaks the address space into different address
ranges, each with their own semantics. Software can register call-
backs that execute in response to specific cache events — misses,
evictions, and writebacks. By default, addresses retain load-store
semantics and have no callbacks registered.

Software defines the behavior of a polymorphic cache hierarchy
by providing a Morph data type and registering it with a specific
address range. Often, the Morph allocates a new “phantom” address
range that is not backed by physical off-chip memory [23], but
Morphs can also be registered on “real” addresses. Phantom call-
backs define the results of loads and stores to the address range,
since there is no backing memory to load or store. Fig. 8 gives
pseudocode for täkō’s basic interface, discussed in detail below.

4.1 register/unregister.
Registering the Morph associates callbacks with an address range.
Software provides a morph type (a child class of täkō::Morph),
the location in the cache hierarchy to register the Morph, and the
address range. The location can be PRIVATE (at the L2) or SHARED
(at the L3). Currently, täkō does not support Morphs at the L1 be-
cause L1s are very tightly integrated with cores; nor does it support
Morphs at memory because memory controllers are below the cache
coherence protocol, complicating consistency in callbacks.

Phantom address ranges are requested only by their size, and
registerPhantom allocates and assigns the address range. To sup-
port Morphs on existing data, registerReal accepts an arbitrary
base and bound and attempts to register the Morph on this range.
täkō only allows one Morph to be registered on an address at a time.
This restriction simplifies translation hardware (see below), but it
is not fundamental.

The Morph remains in effect until unregistered. When a Morph
is registered or unregistered, its address range is flushed from the
cache. unregister de-allocates phantom address ranges.

4.2 Morph objects.
A Morph object represents an instance of a particular polymorphic
cache hierarchy. Multiple instances of a Morph type, or of differ-
ent types, can be registered at the same time, each operating on
their own distinct address ranges (e.g., see Sec. 8.3). register re-
turns a Morph object, letting software threads control it (e.g., by
unregistering it).

Callbacks execute on engines, not cores, and each engine also
has its own view (i.e., copy) of the Morph object. This is important
because each view may have local state, similar to conventional
thread-local state, but shared by all threads running on that engine.
Local state is allocated inmemory, and engines access it via coherent
loads and stores. PRIVATE Morphs have a single view (at the L2), but
SHARED Morphs have one view per L3 bank. The views are gathered
in the views array to, e.g., allow initialization of local state.

4.3 Callbacks.
Cache-triggered callbacks are the heart of täkō’s design. By defining
callbacks in the Morph, software transforms the semantics of that
address range. Callbacks are flexible to maximize täkō’s applica-
bility, but they must obey certain restrictions for correctness and
performance.

Semantics. täkō callbacks allow software to modify cache behav-
ior, as summarized in Table 1. For phantom address ranges, onMiss
and onWriteback directly define the results of loads and stores.
When there is a miss to a phantom address, the cache controller
allocates a line, zeroes it, and then invokes onMiss. When evicting
a phantom cache line, the cache controller invokes onEviction (if
clean) or onWriteback (if dirty) and then discards the line. Inter-
vening memory operations (i.e., cache hits) simply read and write
the data normally, without invoking callbacks.

Callbacks on real address ranges operate similarly, except that the
cache controller reads and writes the backing memory, maintaining
load-store semantics by default. onMiss begins executing in parallel
with reading addr. onWriteback executes before writing back
addr to let the callback interpose.
onMiss is on the critical path of software threads, but onEviction

and onWriteback are not. This difference is important for perfor-
mance: it is best to keep onMiss short, and push work into the
other callbacks (e.g., see Sec. 8.1).

Execution model. Callbacks are short threads that are created
and scheduled entirely by hardware and run in parallel with conven-
tional software threads (Fig. 9). Because callbacks are triggered by
cache hardware, they can occur spontaneously from the perspective
of a software thread. This spontaneity can be unintuitive: cache
misses can be triggered by speculative loads or prefetches, so an
onMiss may not correspond to any committed instruction in a
program. Similarly, data can be evicted from caches at any time,
triggering onWriteback even when no corresponding software
thread is active.

Restrictions. Given these considerations, it is best practice to
write callbacks that behave similarly to conventional reads, evic-
tions, and writebacks. That is, onMiss and onEviction should

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

Core

Engine

Tile

PRIVATE
Morph

L2

SHARED Morph

onMiss()
Initializes data
No side-effects

onEviction()
onWriteback()
Evicts data
Side effects only
 for writebacks

GET GET

L3

Cannot access Morphs
at/above cache level

✘

Figure 9: Callbacks are scheduled by hardware in response to cache
misses, evictions, and writebacks, and run on the engine closest to
the data. Only writebacks should have side effects.

be free of side effects,2 since they can be triggered at any time,
whereas onWriteback can have side effects, since modified data
must correspond to a committed store in some software thread.
These restrictions make it easier to reason about callback behavior,
but täkō does not strictly enforce them because misses/evictions
are sometimes part of correctness (e.g., for security; see Sec. 8.4).

Ignoring side effects, callbacks can reference nearly any memory
address. The remaining exception is that callbacks cannot access
data with a Morph registered at the same or higher level of the cache
hierarchy (Fig. 9). Without this restriction, deadlock is possible
as callbacks trigger further callbacks, quickly exhausting the en-
gine’s hardware scheduler. A SHARED callback is not allowed to
trigger a PRIVATE callback because the PRIVATE callback could
trigger onMiss in the shared cache. But a PRIVATE callback can
trigger a SHARED callback, since there is no cyclic dependence. This
constraint was not problematic in any of our case studies.

Callback code. täkō is designed for short callbacks, which we
find to be natural in our case studies. Callback code executes in
SIMD fashion across entire cache lines. For long code paths or error
conditions, callbacks can raise a user-space interrupt to preempt
a software thread (e.g., see Sec. 8.4). For simulation convenience,
callback code is currently written in C++, and instructions are
mapped onto the dataflow fabric when they first execute; in practice,
one could compile code statically [130, 143].

Coherence and consistency. täkō leverages the cache-coherence
protocol in the baseline multicore to provide a consistent view of
memory. A callback is just another thread in the system, from a
consistency perspective. Engines have coherent L1d caches, imple-
mented using clustered coherence within each tile to avoid increas-
ing directory state [49, 77, 88]. In brief, the L2 and engine L1d snoop
on coherence traffic within each tile so that the directory behaves
exactly as if the engine L1d is part of the L2 cache on that tile.

Callbacks thus enjoy the same coherence and consistency as any
other thread in the system. Additionally, the address that triggered
the callback is locked for the duration of callback execution; i.e., no
other thread (or callback) can access the data until the callback
completes. Locking is strictly enforced by the cache controller,
which serializes operations on each address. Callbacks therefore do
not need to worry about racing accesses to addr, but races to other

2We define a side effect as a modification to non-local state, i.e., a store to any location
except the engine’s local Morph object or the addr itself.

addresses are possible, so callbacks should be data-race free [1] to
maintain consistency.

4.4 flushData.
flushData enables synchronization between callbacks and conven-
tional threads without completely unregistering a Morph. By flush-
ing all of a Morph’s data from the cache, programs are guaranteed
that there will be no further racing writes from callbacks. flushData
signals cache controllers at the appropriate level of the hierar-
chy to walk their tag arrays and flush any lines belonging to the
Morph’s address range, triggering onWriteback or onEviction.
flushData blocks the software thread until all callbacks complete.

4.5 Discussion and roads not taken.
We found the above callbacks to be a logical starting point for a
polymorphic cache hierarchy that covers a wide range of use cases.
As discussed in Sec. 2, the basic intuition is to generalize caches by
letting software provide an onMiss handler [56], and the rest of
the interface and its restrictions follow naturally. We arrived at this
interface early in the design, and it proved useful, self-contained,
and consistent. Although the semantics are not trivial, writing täkō
software has been fairly straightforward in our experience. For
most applications, there is a clear separation of concerns across
misses and clean or dirty evictions (Sec. 8).

That said, more callbacks are certainly possible. onReplacement
would allow software to optimize the eviction policy for particu-
lar workloads [10, 145]. onHit would allow customization of the
cache coherence protocol, among other applications. We did not
pursue onHit because programmable cache coherence has been
explored extensively [3, 23, 34, 73, 75, 113, 123, 151, 152] and be-
cause it seemed that onHit would often be needed in the L1, re-
quiring disruptive core changes. Finally, one could make cache
indexing programmable, letting software re-purpose the tag ar-
ray [111, 112, 116, 121, 122, 154]. We did not explore this direction
to avoid adding any latency to conventional loads and stores — täkō
has no performance impact on legacy applications.

5 TÄKŌ ARCHITECTURE
Similar to recent near-data-computing architectures [6, 83, 105, 142,
150], täkō extends a baseline multicore with near-cache engines
to run callbacks efficiently (Fig. 2). Engines are placed on each tile
of the multicore, near the L2 and L3 caches. The engines consist
of (i) a hardware scheduler that buffers callbacks and runs them
when they are ready, and (ii) a spatial dataflow fabric that exe-
cutes callbacks efficiently. Fig. 10 shows onMiss and onWriteback
callbacks, which are referenced throughout the text below.

5.1 Core modifications for täkō.
Tracking Morphs. täkō tracks which addresses have a registered

Morph via the TLB. TLBs are augmented with two bits indicating
whether a Morph is registered and, if so, whether it is registered
at PRIVATE or SHARED. When a load or store misses, the core aug-
ments the GET request with these bits, giving the Morph’s location
1 . Alternatively, täkō could keep a separate table of registered
Morphs, but this would limit the number of Morphs that could be
registered concurrently.

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

C
al

lb
ac

k
B

uf
fe

r

Core

L3 Bank

Ta
gs

L2 Engine rTLBTLB

Hardware
Scheduler

P ✔
onMiss(V)4

V → P

Scheduled3

P → V

Result cached
(✔ = has Morph)

2

GET P (→ V)1

Response5

(a) onMiss.

C
al

lb
ac

k
B

uf
fe

r

Core

L3 Bank

Ta
gs

L2 Engine rTLBTLB

Hardware
Scheduler

P ✔

V → P

Scheduled8a

P → V

P evicted6

Translate:
P → V

8b

onWriteback(V)9

Invalidate P7

(b) onWriteback.

Figure 10: Example callback execution in täkō on a phantom address.
Engines schedule and execute callbacks in hardware. TLBs and cache
tags trackwhere Morphs are registered. The accompanying text walks
through the steps of callback execution.

ISA. täkō adds one new cache flush instruction, corresponding
to the flushData API, that flushes a particular address range in
the PRIVATE or SHARED cache.

5.2 Cache modifications for täkō.
State. Tags are extended with one bit to track whether a Morph

is registered for the line at that cache level 2 . This bit is set on
insertion using the two registration bits in the GET request.

Triggering a callback. Engines are tightly integrated with the
cache controller. When serving a cache miss, eviction, or writeback,
the controller checks whether a Morph is registered and, if so, sends
a request to the local engine alongwith the addr and operation type.
The engine’s scheduler enqueues a request in its callback buffer 3

8a , which starts executing it as soon as the fabric is available and
the callback configuration is loaded 4 9 . (Usually, the fabric is
ready immediately.) For onEviction and onWriteback, the regis-
tered line occupies an entry in the cache’s writeback buffer until a
callback buffer entry is available. When the callback completes, the
cache controller responds to the original request 5 . Other cache
operations (i.e., all hits and any operation with no Morph registered)
work normally and do not go through the engines at all.

Avoiding deadlock. Without additional mechanisms, deadlock
can occur in the engine scheduler: e.g., suppose the engine’s callback
buffer is full, an executing callback suffers a cache miss, and every
line in the set is waiting to grab a callback buffer spot (e.g., to execute
onMiss). Nothing can be evicted because the callback buffer is full,
so the callback buffer cannot drain.

Luckily, it is easy to avoid this deadlock by ensuring that there is
always a cache line in every set with no Morph registered at this cache
or any child cache. This constraint guarantees forward progress, as
there will always be a line that can be evicted without triggering
a callback. täkō enforces this constraint by modifying its eviction
policy, tr̃rîp (see below). For similar reasons, täkō enforces that
there is always at least one MSHR and writeback buffer entry not
waiting on a callback.

Avoiding cache pollution from callbacks. Callbacks often translate
a phantom address to some real address that is accessed during
the callback, but is not accessed afterwards (e.g., deltas[idx] in
Fig. 4). To avoid cache pollution, täkō modifies its RRIP-based [62]

 Processing Element

ALUs

Fabric Network

op1 op2 pred tid

Token store

Fabric Network

Engine
Dataflow Fabric

E
ng

in
e

L1
d

opcode dst etc

Instr
memory

Figure 11: Sketch of engine dataflow fabric microarchitecture. A
fabric of simple processing elements (PE) are connected by an on-
chip network. Each PE holds a small number of instructions, which
are issued to the ALU when input operands (with matching thread
id) are available. A small number of PEs also connect to memory
through the engine’s L1 data cache.

replacement policy, tr̃rîp, to insert accesses from engines at lower
priority (i.e., closer to eviction). This optimization can significantly
improve cache utilization; e.g., in a simple Morph that maps array-
of-structs to struct-of-arrays, we have observed speedup of >4×.

5.3 Engine microarchitecture.
täkō adds one engine to each tile of the CMP. The engine runs all
callbacks for the L2 and L3 bank on that tile. It has its own cache-
coherent L1 data cache, a small TLB and reverse TLB for address
translation, and a spatial dataflow engine to execute callbacks.

Scheduling callbacks in hardware. The scheduler consists of sim-
ple logic in hardware and a buffer of pending requests. Upon re-
ceiving a callback request, the engine enqueues it in its callback
buffer, assigns the callback a unique id, and loads the callback bit-
stream into the fabric (if necessary). The engine maintains a small
bitstream cache, which maps Morphs’ registered address ranges to
their callbacks’ bitstreams and tracks which callbacks are loaded
on the fabric. Callbacks begin executing once the fabric is ready
and all earlier callbacks on the same addr have finished.

Dataflow fabric. Callbacks execute on a small dataflow fabric;
see Fig. 11. The fabric is an array of simple processing elements
(PEs) connected by an on-chip network. Each PE contains an in-
struction memory that holds a small number (e.g., 16) of static
instructions, a token store that holds intermediate values, and
ALUs. PEs issue operations using asynchronous dataflow firing,
supporting concurrently executing callbacks via dynamic tagmatch-
ing [59, 103, 138, 143] on callback ids. Operations work in SIMD
fashion across entire cache lines at a time.

Our workloads require only a small fabric (e.g., 5×5) with simple
integer operations and few (e.g., 8) concurrent callbacks (see Sec. 9).
Our largest Morph, for HATS (Sec. 8.2), contains 94 instructions
across all its callbacks, less than one-quarter of fabric resources. Our
next-largest application contains only 46 instructions. Moreover,
across all applications, there are nomore than 19 average live tokens
when an engine is active (summing across concurrent callbacks).
There is thus plenty of room for co-running applications to share
engines, even without mechanisms to limit contention (see Sec. 6).

We chose dataflow fabrics for täkō engines because (i) callbacks
are typically short, (ii) callbacks are frequently executed in parallel,

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

Table 2: Hardware overhead (state per L3 bank).

L3 tags 8K lines × 1 bit = 1 KB
Engine L1d, TLB, rTLB 8 KB + 2KB + 2KB = 12KB

Callback buffer 8 lines × 64 B = 0.5 KB
Token store 25 PEs × 8 tokens / PE × 64 B = 12KB

Instruction Memory 25 PEs × 16 instr / PE × ≈4 B = 1.6 KB

Total per L3 bank 27.1 KB / 512 KB = 5.3%

and (iii) callbacks are executed repeatedly. Short callbacks map eas-
ily onto a small, dynamic dataflow fabric, letting täkō run callbacks
near-data with low area overhead. A dataflow fabric can easily run
callbacks in parallel by assigning each a unique tag. Alternatively,
täkō could execute callbacks on reserved SMT threads [141, 151],
but this would either sequentialize callbacks or require multiple,
heavy-weight thread contexts. Moreover, constantly re-fetching
and decoding the same instructions would be wasteful. Preliminary
exploration of SMT threads showed severe performance penalties,
and Sec. 9 finds that in-order cores, as proposed in prior work [6, 83].
perform very poorly in täkō.

5.4 Putting it all together.
täkō’s hardware support adds little area to the baseline multicore
system (Table 2). With 512 KB L3 banks and 64 B lines, the L3 tags
need 1 KB to track Morph registration. The engines have 8 KB L1d
caches, 2 KB TLB and rTLBs (see below), and a 5 × 5 dataflow fabric
with integer functional units. Conservatively overprovisioning the
token and instruction memory yields state overhead of 5.3% over an
L3 bank. This is comparable to recent fabrics [97, 114, 143], which
add roughly 5% area overhead.

6 SYSTEM INTEGRATION
By opening up the cache hierarchy to software, täkō touches many
aspects of the system stack. This paper does not solve every issue,
but here we discuss some of the major implications of polymorphic
cache hierarchies.

Address translation. Caches use physical addresses, but täkō call-
backs need virtual addresses. The engines maintain a reverse TLB
(rTLB) for this purpose. The rTLB is eagerly filled when an onMiss
is scheduled 3 ; however, we found that this optimization makes
little difference in our workloads because rTLB hit ratios are so
high. When a callback is scheduled, the engine recovers the virtual
addr using the rTLB and the physical address from the cache tags
8b . Synonyms (i.e., ambiguity in reverse translation) are not an
issue because only one Morph can be registered on an address at a
time. The engine also keeps a conventional L1 TLB for other data
accessed by callbacks, sharing the L2 TLB with the main core.

täkō has several nice features with respect to address translation.
Phantom addresses are not backed by physical memory, making
huge pages easier to use because fragmentation is less of a con-
cern than in conventional memory allocators [74]. Moreover, the
engines’ rTLB only needs to cover data currently in the cache, since
onEviction and onWriteback can only be triggered on cached
data. Both of these observations mean that the engine rTLB can
be small (Sec. 9). We assume that engine TLBs are kept coherent
using shootdowns when translations change (e.g., when a Morph is
registered or unregistered).

Table 3: System parameters in our experimental evaluation.

Cores 16 cores, x86-64 ISA, 2.4 GHz, OOO Goldmont uarch [4]

Engines 16 engines, 15 int FUs (1-cycle latency), 10 mem FUs, 256-entry rTLB

L1 32 KB, 8-way set-assoc, split data and instruction caches

L2 128 KB, 8-way set-assoc, 2-cycle tag, 4-cycle data array, tr̃rîp repl.,
strided prefetcher

LLC 8MB (512 KB per tile), 16-way set-assoc, 3-cycle tag, 5-cycle data
array, inclusive, tr̃rîp repl.

NoC mesh, 128-bit flits and links, 2/1-cycle router/link delay

Memory 4 controllers, 100-cycle latency, 11.8 GB/s per controller

OS support. täkō requires operating system support to manage
Morph registration. The operating system needs to track which ad-
dress ranges currently have a Morph registered along with a pointer
to the callback code. Phantom address ranges may require an inde-
pendent data structure from the page tables, since they use physical
addresses that do not correspond to physical memory. Morphs also
complicate thread scheduling because eviction callbacks can still
run even if a process is de-scheduled from cores. In many cases, this
is not problematic. But if a process must be fully de-scheduled for
some reason, then it is necessary to also flush its Morphs’ data (i.e.,
using the flushData API). Doing this is feasible but takes time
and energy, especially for Morphs at the SHARED cache.

Multi-tenancy, virtualization, and security. In heavily shared sys-
tems with many active Morphs, further potential problems arise
with thrashing in engines, possible security issues between con-
current callbacks, and virtualizing shared resources. These issues
are outside the scope of this paper, but we think partitioning ap-
plication data across L3 banks is a promising solution [100, 120].
That is, the operating system can prevent unwanted contention
or interaction between callbacks by preventing them from sharing
cache space in the first place.

7 EXPERIMENTAL METHODOLOGY
Simulation framework. We evaluate täkō in execution-driven

microarchitectural simulation. Our simulator shares infrastructure
with SwarmSim [63], but supports cycle-level timing throughout
the memory hierarchy and models täkō’s interface and engines.

System parameters. Except where specified otherwise, our sys-
tem parameters are given in Table 3. We model a tiled multicore
system with 16 cores connected in a mesh on-chip network. Each
tile contains a conventional out-of-order core (modeled after Intel
Goldmont), one bank of the shared LLC, and a täkō engine. Sec. 9
varies these parameters and shows that täkō is effective across a
variety of system configurations.

We assume the out-of-order cores support atomic exchange oper-
ations (e.g., LL/SC) along with other relaxed atomics. Except where
noted, we evaluate engines with a 5 × 5 dataflow fabric (15 integer
PEs and 10 memory PEs) with 1-cycle PE latency. We also evaluate
an idealized engine with unlimited, 0-cycle latency PEs; i.e., callback
latency is only affected by memory latency and data dependencies.

Metrics. We present results for speedup and dynamic execution
energy (energy parameters from [114, 133]). We focus on dynamic
energy because täkō has negligible impact on static power and to
clearly distinguish täkō’s impact on data movement energy from
its overall performance benefits.

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

8 EVALUATION — CASE STUDIES ON TÄKŌ
täkō’s flexible programming interface enables a wide variety of
optimizations on the same, general-purpose hardware. We eval-
uate a sample of four applications that can benefit from täkō to
demonstrate:

• täkō supports prior specialized cache hierarchies. We im-
plement two prior designs that accelerate graphs in very
different ways [92, 95].

• täkō enables features in software that are impossible without
fine-grain visibility over data movement. Specifically, täkō
lets the system eliminate unnecessary writes in direct-access
NVM and detect suspicious activity.

• täkō’s performance is fairly insensitive to its microarchitec-
tural parameters (Sec. 9) and close to an idealized design.

Our case studies depend on being able to observe and interpose on
data movement, and are thus not implementable on prior near-data
computing (NDC) architectures. täkō provides the missing interface
and mechanisms to implement these data-movement optimizations
in software.

8.1 Accelerating commutative scatter-updates.
We begin with an example of how täkō can redefine cache seman-
tics to accelerate data movement. This study implements PHI [95], a
push-based hierarchy for commutative scatter-updates, e.g., in graph
applications. PHI turns the cache into a large write-combining
buffer for commutative operations (e.g., addition). In PHI, the cache
contains updates (e.g., deltas), not raw data. When a cache line is
evicted, PHI either immediately applies the update in-place or logs
the update to be applied later [14, 70]. PHI minimizes memory band-
width by choosing between these two policies, using the number
of updates in the line to decide which is best.

Description. Fig. 12 illustrates how täkō implements PHI. The
application starts by allocating a phantom address range the same
size as the graph’s vertex data. In the first phase, updates are pushed
to the phantom region using remote memory operations (RMO)
(i.e., relaxed atomic add [126]). If updates 1 miss in the cache, they
trigger onMiss 2 to initialize the lines with an identity element
(e.g., zero for addition), without making any requests down the
cache hierarchy. The application then pushes commutative updates
to the cache (i.e., write hits). When a line is evicted from the cache,
onWriteback either directly applies the updates to backing mem-
ory 3a or appends them to a “bin” 3b , depending on the number
of non-identity values in the line. After completing the edge phase,
the main thread calls flushData and then streams through the
bins to apply deferred updates (not shown).

Why täkō? PHI’s design fits very well with täkō’s interface. Its
implementation requires application- and data-dependent opera-
tions on cache lines as they are allocated and evicted. This is exactly
the type of data-movement control that täkō enables in software.
Moreover, PHI is a prime example of the limitations of prior NDC:
PHI requires the ability to intercept misses and writebacks and
modify their behavior, which is not possible in traditional NDC.

Figure 12: täkō lets software re-
purpose the cache to acceler-
ate applications. PHI accelerates
scatter-updates by buffering up-
dates in-cache and applying
them when evicted. Writebacks
either apply updates in-place or
log updates to be applied later.
These optimizations are natu-
rally implemented in täkō via
onMiss and onWriteback.

Memory

BF

E

A
Core

L3 Cache Bank

L2 Engine
C D

{B,1} {E,2}
Bins

{F,1}

{F,1}

{B,1}

{E,2}

{C,3} {D,1}

Update Vertex1

onMiss
zeroes lines

2

3b

3a

onWriteback can
a) update in-place

b) log update

Table 4: täkō callbacks for PHI.

Callback Semantics

onMiss Sets line to identity element (e.g., zero).
onEviction —
onWriteback If # updates > threshold, apply updates immediately;

otherwise, log updates for application in “binning”
phase.

Figure 13: PHI results for PageRank on a 16M vertex, 160M edge
synthetic graph. täkō improves performance by 4.2×.

Evaluation. Fig. 13 shows results for PageRank with 16 threads
pushing updates to a single Morph registered at SHARED,3 compar-
ing täkō to a baseline software implementation, a software imple-
mentation of update batching (UB) [14, 70], and an ideal dataflow
engine. We see similar results as the PHI paper [95]: UB in software
gets 3.2× speedup, but täkō gets 4.2× speedup. täkō also reduces
energy by 36%, compared to 27% for UB.

Figure 14: DRAM accs. per phase.

täkō achieves its benefits by
(i) writing to phantom data,
which does not incur a mem-
ory access on miss; (ii) binning
updates off the critical path
of the main threads on write-
back; and (iii) reducing mem-
ory accesses and core compu-
tation compared to UB (by 29%
each) by buffering updates in
the cache and sometimes applying them in-place. Fig. 14 breaks
down memory accesses for each implementation between the edge,
bin, and vertex phases of PageRank. UB reduces total accesses by
43% by improving spatial locality via binning. täkō reduces total ac-
cesses by 60% by buffering updates in-cache and only binning when
3Due to simulator limitations, we can currently only run PHI at a single level. But
täkō’s design allows hierarchical PHI as described in [95], which would show even
better results.

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

there is poor spatial locality, lowering accesses in both edge and
bin phases. Further, täkō incurs negligible overheads compared to
an ideal engine because onWriteback is short (35 cycles and 21 in-
structions on average), off the critical-path, and most of the latency
comes from memory accesses (0.17 accesses per onWriteback on
average).

8.2 Accelerating graph traversals via streams.
This second study takes a much different view of accelerating graph
applications by using täkō to implement a programmable, de-
coupled stream. Architectures have long had special support for
streaming access patterns [31, 35, 45, 69, 99, 139, 140, 142], many of
which use dedicated engines to stream data to the main cores. We
demonstrate täkō’s support for programmable streams by imple-
menting HATS (hardware-accelerated traversal scheduling) [92],
which computes an efficient graph traversal to improve data locality
in graph applications.

Description. HATS observed that, without expensive pre-processing,
it is inefficient to process edges in the order they are laid out in
memory. Many graphs exhibit strong community structure [13, 78],
so it is much better to process graphs one community at a time.
A bounded, depth-first search (BDFS) is a simple traversal order
that significantly improves locality. The challenge is that BDFS is a
poor fit for cores due to unpredictable control flow, so HATS adds
a dedicated hardware engine.

Fig. 15 illustrates the täkō implementation of HATS. The appli-
cation initially allocates a phantom address range large enough
to hold every edge of the graph (recall that no physical memory
is allocated). This phantom address range acts as a stream, where
the core reads edges sequentially and the engine supplies edges
when requested by onMiss. HATS’s onMiss keeps a small stack
and walks the graph in BDFS order, as described in the original
paper [92]. Our current implementation of HATS sequentializes
all onMisses to simplify contention on the shared stack. While
the core processes one part of the stream, the prefetcher triggers
onMiss for subsequent edges. Note that onMiss is not guaranteed
to be called in strictly sequential order, but this is fine in HATS
because minor re-orderings have minimal impact on locality.

However, a more serious concern is that phantom lines can be
evicted before the core has processed them. Although this occurs
exceedingly rarely, the application cannot tolerate any lost edges.
täkō solves this problem by logging unprocessed edges to memory
in onWriteback and onEviction. To know which edges have
been processed, the core assigns an INVALID value to processed
edges using an atomic exchange (e.g., LL/SC). Any unprocessed
edges are logged during onWriteback and onEviction, and the
core processes the logged edges at the end of the iteration.

Why täkō? HATS is a good example of a streaming computation
that runs inefficiently on cores, motivating the need for separate
streaming hardware [6, 142, 150]. This case study shows how täkō
can support this important class of workloads. For performance,
HATS relies on decoupling between graph traversal (on engines)
and edge processing (on cores); this is awkward if not impossible to
implement in NDC.Moreover, implementing HATS in täkō software

Figure 15: täkō’s stream imple-
mentation supports complex de-
coupled pipelines. HATS im-
proves locality in graphs by
traversing the graph in bounded
depth-first order so that com-
munities are visited together.
onMiss provides a simple, data-
movement triggered approach
to filling a stream.

Memory

Core

L3

Engine
A C E F

Core streams
 thru edges

DFS stack

C

G

B

A

F E

DStart

1
onMiss explores
graph depth-first

2

{C,B} {G,F}
Logged Edges

{A,C}{C,E}
{INV}{E,G}

onWriteback &
onEviction
log unprocessed
edges

3

Table 5: täkō callbacks for HATS.

Callback Semantics

onMiss Fills line with edges in BDFS order.
onEviction Logs unprocessed edges.
onWriteback Logs unprocessed edges.

Figure 16: HATS results for one iteration of PageRank on uk-2002
graph [33]. täkō improves performance by 43% and reduces energy
by 17% vs. the software baseline.

Figure 17: HATS performance breakdown. Left: DRAM accesses split
by PageRank phase. Mid: core branch mispredictions per graph edge
processed. Right: cumulative core load latency.

lets it support a wide range of graph data formats or traversal
heuristics [22, 94], unlike fixed-function hardware.

Evaluation. Fig. 16 presents speedup and energy results for a sin-
gle thread of PageRank with the baseline “vertex-ordered” traversal,
a baseline software BDFS implementation, täkō, and an ideal engine.
Baseline BDFS provides minimal benefits due to extra instructions
with complex control flow. In contrast, täkō provides substantial
speedup of 43%, approaching the 46% speedup of an ideal engine.
täkō also reduces energy by 17%, compared to 22% for ideal.

This speedup is due to (i) better cache locality; (ii) regularizing
control flow on the core; and (iii) decoupling edge traversal from
the core. Fig. 17 quantifies these points. All versions incur the same
number of accesses during the vertex phase, but the BDFS traversal
(also used by täkō) reduces misses to vertex data during the edge

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 18: täkō increases
software’s visibility over data
movement, making some
operations dramatically more
efficient. When caches are per-
sistent, täkō lets transactions
avoid journaling if there are
no writebacks before commit.
Better visibility thus greatly
reduces transaction overheads.

Non-Volatile
Memory

Core

L3

Engine

Persistent Objs

Write Tx Data1

Tx
Buffer

Journal

Commit Tx2

flushData
to write tx

in-place

3

Apply journal4

onWriteback journals updates, but
only if something evicted pre-commit

∞

phase by 40%. täkō also eliminates branchmispredictions by turning
the complex BDFS traversal into simple loop over a sequential
stream, whereas software BDFS increases mispredictions by 52%.
Finally, täkō reduces memory latency seen at the core by 19% over
BDFS by decoupling the edge traversal.

täkō achieves significant speedups onHATS, but somewhat lower
than reported in [92]. This is because we sequentialize the calls
to onMiss, whereas [92] re-orders the trace to exploit locality by
traversing multiple neighbors in parallel and processing whichever
data returns first.

8.3 System support: Transactions in
direct-access NVM.

We next show how better visibility over data movement en-
ables new features and optimizations. There are many applications
where it would be useful to know when data moves in or out of
caches: e.g., for immutable data structures [19], intermittent com-
puting [28, 84, 86, 87], checking data integrity [67, 144, 156], de-
bugging and logging [25, 91], etc. This study considers a filesystem
on non-volatile memory (NVM) with battery-backed caches, like
Intel eADR [60]. The major challenge is to avoid inconsistent states
on failure. For this purpose, NVM filesystems employ transactions
using journaling, logging, or shadow paging [144, 156].

Description. Fig. 18 illustrates efficient journal-based transac-
tions in täkō. Like prior transactional memory designs [91], the
idea is that if a transaction’s writes complete before any have been
evicted from cache, then it is safe to push the updates directly to
NVM without journaling. (In a sense, the cache is the journal.) The
application writes all updates to a phantom address range 1 . To
commit a transaction, the thread simply flushes the Morph’s phan-
tom data from the cache 2 . onWriteback either writes directly
to NVM (if the transaction has committed) or journals the writes
(if not) ∞ . In the common case where no data is evicted, täkō
adds minimal overhead 3 . But if data is evicted before commit,
then the application must apply the journaled writes to commit the
transaction 4 . This design permits one in-flight transaction per
Morph instance, but an application can register many instances. We
register at PRIVATE because each transaction needs to flush all the
phantom data, which is more efficient in the L2.

Why täkō? Current NVM filesystems must implement transac-
tions conservatively because they cannot observe when data enters
or leaves caches. Journaling avoids writing directly to data, but
adds instructions and NVM writes. täkō lets filesystems only resort

Table 6: täkō callbacks for NVM support.

Callback Semantics

onMiss Sets line with INVALID value.
onEviction —
onWriteback If transaction committed, apply writes immediately;

otherwise, journal writes.

Figure 19: Results for NVM journaling microbenchmark at different
transaction sizes. täkō improves performance by up to 2.1× and
reduces energy by up to 47%.

to journaling if data falls out of the cache. Prior NDC systems do
not improve visibility over data movement and hence do not enable
this feature.

Figure 20: Instructions executed
for each 8B written in application.

Evaluation. Fig. 19 shows re-
sults for a workload of append-
only transactions of different
sizes, from 1KB to 128KB. As
long as transactions fit in the
L2, täkō provides up to 2.1×
speedup by eliminating unnec-
essary journaling. täkō exe-
cutes ≈50% fewer core instruc-
tions and ≈36% fewer total in-
structions (Fig. 20), yielding large speedup and up to 47% energy
savings. täkō achieves the same gains as the ideal engine because
the engine mainly performs very simple data copies. When the
transaction size exceeds the cache size (i.e., 128 KB), onWriteback
falls back to journaling and performs closer to the baseline. How-
ever, täkō still outperforms the baseline by filling the journal in
onWriteback, off the critical-path of the core.

8.4 Detecting side-channel attacks.
Finally, we demonstrate täkō’s security benefits by showing how
it can defend against prime+probe attacks [81] at the shared cache.
This study emphasizes the additional functionality enabled by bet-
ter visibility over data movement. Specifically, we demonstrate
that täkō enables fine-grain monitoring of data for side-channel
attacks [12, 48, 52, 61, 68, 79, 81, 96, 125, 147].

Threat model. We consider a scenario with attacker and victim
threads running on separate cores in a CMP with shared last-level
cache. The attacker detects when the victim accesses a vulnerable
data structure (e.g., AES tables) to reverse engineer secure data
(e.g., AES keys). We consider a prime+probe attack, but prior work
has used similar techniques to defend flush+reload, evict+time, and
cache+collision [26, 46].

Description. The prime+probe attack [81] leaks information about
a victim process simply by detecting which cache sets the victim

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

0 10 20 30 40
Eviction Count of Target LLC Bank

0

100

200

300

400

500

Se
t E

vi
ct

ed

AES Encryption

Priming

AES Encryption

Probing

Victim
data evicted

Attacker
data evicted

Attacker detects miss!

(a) Attack succeeds in baseline.

0 5 10 15 20 25 30
Eviction Count of Target LLC Bank

0

100

200

300

400

500

Se
t E

vi
ct

ed

AES Encryption

Priming

OnEviction()
Attack caught!

(b) Attack detected in täkō.

Figure 21: Prime+probe attack on AES encryption tables at the L3.
Without täkō, the attack succeeds with the victim unaware. täkō
detects the attack immediately.

Table 7: täkō callbacks for detecting side-channel attacks.

Callback Semantics

onMiss —
onEviction Interrupt main thread.
onWriteback —

accesses, as shown in Fig. 21a. The attacker starts by priming a
target cache set with its own data. After the victim has accessed
its secure data, the attacker then monitors how long it takes to
probe its own data. Long latency (due to cache misses) reveals to
the attacker which sets the victim has accessed, and thus leaks the
victim’s access pattern. This prime+probe attack has been shown
to leak entire AES keys [48, 61, 79].

täkō gives the victim visibility over movement of their secure
data. Specifically, to detect a prime+probe attack, the victim needs
to know when data is evicted. The application registers a “real data”
Morph for the address range of its secure data (e.g., AES tables). The
Morph only implements one callback, onEviction, which simply
interrupts the main thread whenever any cache line containing the
AES tables is evicted. This interrupt lets the victim defend itself
from attack [12, 102, 125]. Fig. 21b shows a cache-eviction trace
of an attack that is successful without täkō (left) and unsuccessful
with täkō (right). täkō interrupts the victim during the probe phase
of the attack before any information is leaked.

Why täkō? täkō exposes software to previously invisible data
movement. Although active attackers can time cache accesses to
expose microarchitectural state, passive victims might never even
know they were attacked. täkō provides victim applications the
tools to monitor data movement for cache attacks. This allows
victims to take control over their data and defend themselves pro-
actively. Like transactions above, visibility over data movement is
the key to this defense, and prior NDC systems offer no solution.

9 EVALUATION — SENSITIVITY STUDIES
Engine microarchitecture. We study täkō’s sensitivity to engine

microarchitecture on HATS. HATS is most sensitive to the fabric
because its onMiss is the longest callback among our benchmarks.
Fig. 22 evaluates different dataflow-fabric sizes, as well as an in-
order core and ideal. Dataflow vastly outperforms in-order, but
performance plateaus with small fabrics. We use a 5 × 5 fabric,
which is within 1.8% of ideal. Fig. 23 evaluates HATS on a 5 ×

In
-o

rd
er

2x
2

3x
3

4x
4

5x
5

6x
6

7x
7

8x
8

Id
ea

l0.0

0.5

1.0

1.5

S
pe

ed
up

Figure 22: Sensitivity to engine
fabric with HATS.

0 1 2 4 8
Arithmetic PE latency (cycles)

0.0

0.5

1.0

1.5

S
pe

ed
up

Figure 23: Sensitivity to arith-
metic PE latency with HATS.

Figure 24: PHI results for PageR-
ank on a 160M-edge synthetic
graph. täkō performs similarly
with all core microarchitectures.

Figure 25: PHI results for PageRank across different numbers of
cores/threads and different graph sizes (shown as num. edges). täkō
performs well across all configurations.

5 fabric, varying arithmetic PE execution latency. We use single-
cycle latency, but even at eight cycles speedup only decreases to 30%
from 43%. This is because memory-level parallelism, not arithmetic
throughput, is what matters most for täkō (Sec. 5.3).

Core microarchitecture. Fig. 24 evaluates PageRank on PHI with
different core microarchitectures. Speedup is unchanged because
PageRank is memory-bound. Beefier cores improve performance
in absolute terms on decompression and HATS, but täkō’s speedup
is affected little.

Scalability. Fig. 25 evaluates PageRank on PHI across different
system and data sizes. (Memory bandwidth scales proportionally
with cores.) täkō consistently outperforms update batching and
improves with data size. täkō outperforms update batching by≈34%,
32%, and 21% at 8, 16, and 36 cores, respectively. Hierarchical PHI
would improve PHI’s speedup further at larger core counts by
reducing cross-chip coherence traffic.

Callback-buffer size. The NVM journaling benchmark invokes
many concurrent onWritebacks when flushing data, stressing the
callback buffer. Varying the callback buffer from 1 to 64 entries,
performance plateaus at 4 entries. Accordingly, we use 8 entries as
a practical but sufficient size in our evaluation.

rTLB size. Finally, we swept rTLB size from 256 to 1024 entries
with both 4 KB and 2MB pages, and found that performance varied
by at most 2.1%. We use 256 entries with 2MB pages.

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

10 RELATEDWORK
The cost of data movement. Data movement is more expensive

than compute and only growing more so [30, 53, 55, 76]. Even with
inefficient out-of-order cores, data movement often consumes the
majority of execution time and energy. Architectural specialization
is no panacea: specialization makes data movement relatively more
expensive [32, 38], and a significant fraction of programswill always
run on general-purpose cores [119]. Architectures simply must
become more efficient at data movement.

Specialized cache hierarchies. These trends have been widely
recognized, and there are many proposals to accelerate data move-
ment, e.g., in machine learning [2, 50], graph analytics [92, 95, 150],
data structures [54, 58, 154], memoization [8, 40, 153, 154], com-
pression [9, 36, 90, 106, 107, 118, 136, 146], data layout [7, 23, 155],
prefetching [6, 131, 149], coherence and synchronization [34, 75,
151, 152], memory management [85, 135], and system software [67,
108, 127]. While highly effective, they share the drawback of requir-
ing custom hardware.

Software control of data movement. There has been some work
that attempts to give software more control over the cache through
better hardware partitioning mechanisms [15, 29, 37, 39, 110, 117,
133], software policies [16, 17, 24, 66, 82, 120], or a richer inter-
face [93, 137]. These works are complementary to täkō: they con-
trol data movement behind the load-store interface, whereas täkō
expands that interface.

Near-data computing. Rather than move data to compute, some
architectures move compute to data. Many of these designs are
discrete “processing in-memory” co-processors that integrate logic
in memory [27, 44, 64, 71, 72, 80, 98, 101, 104, 124, 128] or near
high-bandwidth memory [7, 11, 18, 20, 41, 42, 57, 109, 148, 157]. Co-
processor designs make sense on streaming applications, but they
are ill-suited to applications with significant data reuse or fine-grain
communication [5, 57, 83, 134, 148]. Other architectures enable near-
data computing within a CPU’s memory hierarchy, letting cores
offload work to memory [5, 51] or caches [2, 5, 83, 105, 129, 142].
However, there is no mechanism to trigger software when data
moves, which we have shown is essential to many data-movement
optimizations. täkō provides this missing mechanism.

Programmablememory hierarchies. Finally, themost relatedwork
is prior programmable memory hierarchies. The first programmable
memory hierarchies were explored in the ‘90s and focused on dis-
tributed cache coherence [3, 23, 56, 73, 113, 123]. More recently, de-
signs have added some programmability to the memory hierarchy
for specific purposes: e.g., prefetching [6, 131] or compression [146].
By contrast, täkō targets a much wider set of features and optimiza-
tions by providing a general-purpose interface and architecture to
increase software’s visibility and control over data movement.

11 CONCLUSION AND FUTUREWORK
Many inefficiencies in current systems are the result of an out-
dated hardware-software interface that gives software too little
visibility and control over data movement. Polymorphic cache hi-
erarchies expand the hardware-software interface to expose more
data movement to software. täkō is an efficient, general-purpose

implementation of a polymorphic cache hierarchy that massively
reduces the innovation barrier for data movement features and
optimizations. We demonstrated the wide applicability of täkō in
five case studies.

Polymorphic cache hierarchies open up several exciting direc-
tions for further research. The current programming interface is
low-level and intended for experts as an alternative to custom hard-
ware. Language and compiler support would make polymorphic
cache hierarchies more approachable for programmers. The large
design space for the engine microarchitecture remains unexplored,
and there is potential for new callbacks to unlock more applications.
täkō provides the first step towards a polymorphic cache hierarchy,
and we plan to explore each component further in future work.

ACKNOWLEDGMENTS
We thank the anonymous reviewers, Nikhil Agarwal, Souradip
Ghosh, Graham Gobieski, Brandon Lucia, Sara McAllister, and
Nathan Serafin for their feedback. Brian Schwedock is supported
by an NSF Graduate Research Fellowship and the Ann and Mar-
tin McGuinn Graduate Fellowship. Jennifer Seibert was supported
by an NSF REU grant in the REUSE program at CMU’s Institute
for Software Research. This work was supported by NSF grant
CCF-1845986.

REFERENCES
[1] Sarita V Adve and Kourosh Gharachorloo. 1996. Shared memory consistency

models: A tutorial. IEEE Computer (1996).
[2] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. 2017. Compute caches. In Proc. of the 23rd IEEE
intl. symp. on High Performance Computer Architecture (Proc. HPCA-23).

[3] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David
Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald
Yeung. 1995. The MIT Alewife machine: architecture and performance. Proc. of
the 22nd annual Intl. Symp. on Computer Architecture (1995).

[4] Agner Fog. 2020. The microarchitecture of Intel, AMD and VIA CPUs. https:
//www.agner.org/optimize/microarchitecture.pdf.

[5] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: a low-overhead, locality-aware processing-in-memory architecture.
In Proc. of the 42nd annual Intl. Symp. on Computer Architecture (Proc. ISCA-42).

[6] Sam Ainsworth and Timothy M Jones. 2018. An Event-Triggered Programmable
Prefetcher for Irregular Workloads. In Proc. of the 23rd intl. conf. on Architectural
Support for Programming Languages and Operating Systems (Proc. ASPLOS-
XXIII).

[7] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data reorganization
in memory using 3D-stacked DRAM. In Proc. of the 42nd annual Intl. Symp. on
Computer Architecture (Proc. ISCA-42).

[8] Ismail Akturk and Ulya R Karpuzcu. 2017. AMNESIAC: Amnesic Automatic
Computer. (2017).

[9] Alaa R Alameldeen and David A Wood. 2004. Adaptive cache compression for
high-performance processors. In Proc. of the 31st annual Intl. Symp. on Computer
Architecture (Proc. ISCA-31).

[10] Vignesh Balaji, Neal Crago, Aamer Jaleel, and Brandon Lucia. 2021. P-OPT:
Practical Optimal Cache Replacement for Graph Analytics. In Proc. of the 27th
IEEE intl. symp. on High Performance Computer Architecture (Proc. HPCA-27).

[11] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,
Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-data processing:
Insights from a MICRO-46 workshop. IEEE Micro 34, 4 (2014), 36–42.

[12] Sahan Bandara and Michel A Kinsy. 2020. Adaptive caches as a defense mecha-
nism against cache side-channel attacks. Journal of Cryptographic Engineering
(2020).

[13] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality exists in
graph processing: Workload characterization on an Ivy Bridge server. In Proc.
of the IEEE Intl. Symp. on Workload Characterization (Proc. IISWC).

[14] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing PageRank
communication via propagation blocking. In Proc. of the 31st IEEE Intl. Parallel
and Distributed Processing Symp. (Proc. IPDPS).

[15] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable Software-Defined
Caches. In Proc. of the 22nd intl. conf. on Parallel Architectures and Compilation

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

Techniques.
[16] Nathan Beckmann and Daniel Sanchez. 2015. Talus: A Simple Way to Remove

Cliffs in Cache Performance. In Proc. of the 21st IEEE intl. symp. on High Perfor-
mance Computer Architecture (Proc. HPCA-21).

[17] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scaling distributed
cache hierarchies through computation and data co-scheduling. In Proc. of the
21st IEEE intl. symp. on High Performance Computer Architecture (Proc. HPCA-21).

[18] Bryan Black. 2013. Die Stacking is Happening!. In MICRO-46 Keynote.
[19] Guy E Blelloch, Phillip B Gibbons, Yan Gu, Charles McGuffey, and Julian Shun.

2018. The parallel persistent memory model. In Proc. of the 30th ACM Symp. on
Parallelism in Algorithms and Architectures (Proc. SPAA).

[20] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks. In Proc. of the 23rd intl. conf. on Ar-
chitectural Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XXIII).

[21] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web
caching and Zipf-like distributions: Evidence and implications. In IEEE INFO-
COM. 126–134.

[22] Aydin Buluç and John R. Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In Proc. of the 22nd IEEE Intl. Parallel and Distributed
Processing Symp. (Proc. IPDPS).

[23] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, Erik
Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael Parker, Lam-
bert Schaelicke, and Terry Tateyama. 1999. Impulse: Building a smarter memory
controller. In Proc. of the 5th IEEE intl. symp. on High Performance Computer
Architecture (Proc. HPCA-5).

[24] Shuang Chen, Christina Delimitrou, and José F. Martinez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In Proc. of the 24th
intl. conf. on Architectural Support for Programming Languages and Operating
Systems (Proc. ASPLOS-XXIV).

[25] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B
Gibbons, Todd CMowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan,
and Evangelos Vlachos. 2008. Flexible hardware acceleration for instruction-
grain program monitoring. In Proc. of the 35th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-35).

[26] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B. Lee, Haibo Chen,
and XiaoFeng Wang. 2018. Leveraging Hardware Transactional Memory for
Cache Side-Channel Defenses. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security.

[27] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory. In Proc. of the
43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43).

[28] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Proc. of the ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (Proc. OOPSLA).

[29] Intel corporation. 2015. Improving Real-Time Performance by Using Cache
Allocation Technology. Intel Whitepaper (2015).

[30] William J. Dally. 2010. GPU Computing: To Exascale and Beyond. In Supercom-
puting ’10, Plenary Talk.

[31] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J-H Ahn, N. Jayasena,
U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck. 2003. Merrimac: Supercomputing
with streams. In Proc. of the ACM/IEEE conf. on Supercomputing (Proc. SC03).

[32] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Specific
Hardware Accelerators. Commun. ACM 63, 7 (June 2020), 10 pages. https:
//doi.org/10.1145/3361682

[33] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM TOMS 38, 1 (2011).

[34] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun.
2017. Understanding and Optimizing Asynchronous Low-Precision Stochastic
Gradient Descent. In Proc. of the 44th annual Intl. Symp. on Computer Architecture
(Proc. ISCA-44).

[35] Joao Mario Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. 2021. Unlim-
ited Vector Extension with Data Streaming Support. In Proc. of the 48th annual
Intl. Symp. on Computer Architecture (Proc. ISCA-48).

[36] Magnus Ekman and Per Stenstrom. 2005. A robust main-memory compression
scheme. In Proc. of the 32nd annual Intl. Symp. on Computer Architecture (Proc.
ISCA-32).

[37] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong
Ma, and Daniel Sanchez. 2018. KPart: A Hybrid Cache Partitioning-Sharing
Technique for Commodity Multicores. In Proc. of the 24th IEEE intl. symp. on
High Performance Computer Architecture (Proc. HPCA-24).

[38] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger. 2011.
Dark Silicon and The End of Multicore Scaling. In Proc. of the 38th annual Intl.
Symp. on Computer Architecture (Proc. ISCA-38).

[39] Yaosheng Fu, Tri M Nguyen, and David Wentzlaff. 2015. Coherence domain
restriction on large scale systems. In Proc. of the 48th annual IEEE/ACM intl.
symp. on Microarchitecture (Proc. MICRO-48).

[40] Adi Fuchs and David Wentzlaff. 2018. Scaling Datacenter Accelerators With
Compute-Reuse Architectures. In Proc. of the 45th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-45).

[41] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical near-data
processing for in-memory analytics frameworks. In Proc. of the 24th Intl. Conf.
on Parallel Architectures and Compilation Techniques (Proc. PACT-24).

[42] Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible recon-
figurable logic for near-data processing. In Proc. of the 22nd IEEE intl. symp. on
High Performance Computer Architecture (Proc. HPCA-22).

[43] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and
Nathan Beckmann. 2021. Snafu: An Ultra-Low-Power, Energy-Minimal CGRA-
Generation Framework and Architecture. In Proc. of the 48th annual Intl. Symp.
on Computer Architecture (Proc. ISCA-48).

[44] Maya Gokhale, Bill Holmes, and Ken Iobst. 1995. Processing in memory: The
Terasys massively parallel PIM array. Computer 28, 4 (1995).

[45] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari
Cadambi, R Reed Taylor, and Ronald Laufer. 1999. PipeRench: A coprocessor
for streaming multimedia acceleration. In Proc. of the 26th annual Intl. Symp. on
Computer Architecture (Proc. ISCA-26).

[46] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection Using
Hardware Transactional Memory. In Proceedings of the 26th USENIX Conference
on Security Symposium.

[47] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptol. ePrint Arch. 2016 (2016), 204.

[48] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games–
Bringing access-based cache attacks on AES to practice. In 2011 IEEE Symposium
on Security and Privacy.

[49] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. 1992. Reducing memory
and traffic requirements for scalable directory-based cache coherence schemes.
In Scalable shared memory multiprocessors. Springer, 167–192.

[50] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pdream, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proc. of the 43rd annual Intl. Symp. on Computer Architecture
(Proc. ISCA-43).

[51] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. 2016. Acceler-
ating dependent cache misses with an enhanced memory controller. In Proc. of
the 43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43).

[52] Zecheng He and Ruby B Lee. 2017. How secure is your cache against side-
channel attacks?. In Proc. of the 50th annual IEEE/ACM intl. symp. on Microar-
chitecture (Proc. MICRO-50).

[53] John Hennessy and David Patterson. 2018. A New Golden Age for Computer
Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Se-
curity, Open Instruction Sets, and Agile Chip Development. In Turing Award
Lecture.

[54] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik
Kim, and John Kim. 2016. Accelerating linked-list traversal through near-data
processing. In Proc. of the 25th Intl. Conf. on Parallel Architectures and Compilation
Techniques (Proc. PACT-25).

[55] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about
it). In ISSCC.

[56] Mark Horowitz, Margaret Martonosi, Todd C Mowry, and Michael D Smith.
1996. Informing memory operations: Providing memory performance feedback
in modern processors. (1996).

[57] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler.
2016. Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems. In Proc. of the 43rd annual
Intl. Symp. on Computer Architecture (Proc. ISCA-43).

[58] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer chas-
ing in 3D-stacked memory: Challenges, mechanisms, evaluation. In Proc. of the
34th Intl. Conf. on Computer Design (Proc. ICCD).

[59] Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengyong Wu.
2013. Elastic cgras. In Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays (FPGA).

[60] Intel. 2020. Intel Optane Persistent Memory 200.
[61] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A shared cache

attack that works across cores and defies VM sandboxing–and its application to
AES. In 2015 IEEE Symposium on Security and Privacy.

[62] Aamer Jaleel, Kevin Theobald, Simon C. Steely Jr, and Joel Emer. 2010. High
Performance Cache Replacement Using Re-Reference Interval Prediction (RRIP).
In Proc. of the 37th annual Intl. Symp. on Computer Architecture.

[63] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In Proc. of the 48th annual

https://doi.org/10.1145/3361682
https://doi.org/10.1145/3361682

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-48).
[64] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Lam,

Pratap Pattnaik, , and Josep Torrellas. 1999. FlexRAM: Towards an intelligent
memory system. In Proc. of the 17th Intl. Conf. on Computer Design (Proc. ICCD).

[65] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory Encryption.
Technical Report. AMD.

[66] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache Sharing with
Strict QoS for Latency-Critical Workloads. In Proc. of the 19th intl. conf. on
Architectural Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XIX).

[67] Rajat Kateja, Nathan Beckmann, and Gregory R Ganger. 2020. Tvarak: software-
managed hardware offload for redundancy in direct-access NVM storage. In
Proc. of the 47th annual Intl. Symp. on Computer Architecture (Proc. ISCA-47).

[68] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel. 2016. A high-
resolution side-channel attack on last-level cache. In 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2897937.
2897962

[69] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens, B.
Towles, A. Chang, and S. Rixner. 2001. Imagine: media processing with streams.
IEEE Micro 21, 2 (2001).

[70] Vladimir Kiriansky, Yunming Zhang, and Saman Amarasinghe. 2016. Optimizing
indirect memory references with milk. In Proc. of the 25th Intl. Conf. on Parallel
Architectures and Compilation Techniques (Proc. PACT-25).

[71] Peter M Kogge. 1994. EXECUBE-A new architecture for scaleable MPPs. In Proc.
of the intl conf. on Parallel Processing (ICPP).

[72] Christoforos E Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Ander-
son, Krste Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin
Gribstad, Kimberly Keeton, Randi Thomas, Noah Treuhaft, and Katherine Yelick.
1997. Scalable processors in the billion-transistor era: IRAM. Computer 30, 9
(1997).

[73] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, , and John Hennessy. 1994. The
Stanford FLASH multiprocessor. In Proc. of the 21st annual Intl. Symp. on Com-
puter Architecture (Proc. ISCA-21).

[74] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Em-
mett Witchel. 2016. Coordinated and Efficient Huge Page Management with
Ingens.. In Proc. of the 12th USENIX symp. on Operating Systems Design and
Implementation (Proc. OSDI-12).

[75] Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. 2015. BSSync: Processing near
memory for machine learning workloads with bounded staleness consistency
models. In Proc. of the 24th Intl. Conf. on Parallel Architectures and Compilation
Techniques (Proc. PACT-24).

[76] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, But-
ler W Lampson, Daniel Sanchez, and Tao B Schardl. 2020. There’s plenty of
room at the Top: What will drive computer performance after Moore’s law?
Science 368, 6495 (2020).

[77] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. 1990. The directory-based cache coherence protocol for the DASH
multiprocessor. (1990).

[78] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2008.
Statistical properties of community structure in large social and information
networks. In Proc. of the intl. World Wide Web conf. (WWW-17).

[79] Bo Li and Bo Jiang. 2018. Cache Attack on AES for Android Smartphone. In
Proceedings of the 2nd International Conference on Cryptography, Security and
Privacy.

[80] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. ACM, 173.

[81] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy.

[82] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In
Proc. of the 42nd annual Intl. Symp. on Computer Architecture (Proc. ISCA-42).

[83] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru
Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. 2020. Livia:
Data-centric computing throughout the memory hierarchy. In Proc. of the 25th
intl. conf. on Architectural Support for Programming Languages and Operating
Systems (Proc. ASPLOS-XXV).

[84] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation (Proc. PLDI).

[85] Martin Maas, Krste Asanovic, and John Kubiatowicz. 2018. A Hardware Accel-
erator for Tracing Garbage Collection. In Proc. of the 45th annual Intl. Symp. on
Computer Architecture (Proc. ISCA-45).

[86] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution without Checkpoints. In Proc. of the ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (Proc. OOPSLA).

[87] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing for
Safe Efficient Intermittent Computing. In Proc. of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’18). USENIX Associa-
tion, Berkeley, CA, USA, 16 pages. http://dl.acm.org/citation.cfm?id=3291168.
3291178

[88] MiloMartin, MarkDHill, andDaniel J Sorin. 2012. Why on-chip cache coherence
is here to stay. Commun. ACM (2012).

[89] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright
Jerger. 2015. DoppelgäNger: A Cache for Approximate Computing. In Proc. of
the 48th annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-48).

[90] Joshua San Miguel and Natalie Enright Jerger. 2016. The anytime automaton.
In Proc. of the 43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43).

[91] Kevin E Moore, Jayaram Bobba, Michelle J Moravan, Mark D Hill, and David A
Wood. 2006. LogTM: log-based transactional memory.. In Proc. HPCA.

[92] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proc. of the 51st annual IEEE/ACM intl. symp.
on Microarchitecture (Proc. MICRO-51).

[93] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016. Whirlpool:
Improving dynamic cache management with static data classification. In Proc.
of the 21st intl. conf. on Architectural Support for Programming Languages and
Operating Systems (Proc. ASPLOS-XXI).

[94] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2017. Cache-Guided
Scheduling: Exploiting Caches to Maximize Locality in Graph Processing. In 1st
International Workshop on Architectures for Graph Processing (AGP 2017), held in
conjuntion with ISCA-44.

[95] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Archi-
tectural Support for Synchronization- and Bandwidth-Efficient Commutative
Scatter Updates. In Proc. of the 52nd annual IEEE/ACM intl. symp. on Microarchi-
tecture (Proc. MICRO-52).

[96] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Rao Naveed Bin Rais,
Vianney Lapotre, and Guy Gogniat. 2018. Run-time detection of prime+ probe
side-channel attack on AES encryption algorithm. In 2018 Global Information
Infrastructure and Networking Symposium (GIIS).

[97] Quan M. Nguyen and Daniel Sánchez. 2021. Fifer: Practical Acceleration of
Irregular Applications on Reconfigurable Architectures. In Proc. of the 54th
annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-54).

[98] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. 1993. The J-
machine multicomputer: an architectural evaluation. In Proc. of the 20th annual
Intl. Symp. on Computer Architecture.

[99] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-dataflow acceleration. In ISCA 44.

[100] Hamza Omar and Omer Khan. 2020. IRONHIDE:A Secure Multicore that Effi-
ciently Mitigates Microarchitecture State Attacks for Interactive Applications.
In Proc. of the 26th IEEE intl. symp. on High Performance Computer Architecture
(Proc. HPCA-26).

[101] M. Oskin, F. Chong, and T. Sherwood. 1998. Active Pages: A Model of Computa-
tion for Intelligent Memory. In Proc. of the 25th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-25).

[102] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1–20.

[103] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal
Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer
Jaleel, Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013. Trig-
gered instructions: A control paradigm for spatially-programmed architectures.
In Proc. of the 40th annual Intl. Symp. on Computer Architecture (Proc. ISCA-40).

[104] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. 1997. A
case for intelligent RAM. IEEE micro 17, 2 (1997), 34–44.

[105] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T Kandemir, Anand Sivasubramaniam, and Chita R Das. 2019. Opportunistic
computing in gpu architectures. In Proc. of the 46th annual Intl. Symp. on Com-
puter Architecture (Proc. ISCA-46).

[106] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2013. Linearly
compressed pages: a low-complexity, low-latency main memory compression
framework. In Proc. of the 46th annual IEEE/ACM intl. symp. on Microarchitecture
(Proc. MICRO-46).

[107] Gennady Pekhimenko, Vivek Seshadri, OnurMutlu, Phillip BGibbons,Michael A
Kozuch, and Todd C Mowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In Proc. of the 21st Intl. Conf. on Parallel
Architectures and Compilation Techniques (Proc. PACT-21).

[108] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus prime:

https://doi.org/10.1145/2897937.2897962
https://doi.org/10.1145/2897937.2897962
http://dl.acm.org/citation.cfm?id=3291168.3291178
http://dl.acm.org/citation.cfm?id=3291168.3291178

ISCA ’22, June 18–22, 2022, New York, NY, USA Schwedock, et al.

Accelerating data transformation in servers. In Proc. of the 25th intl. conf. on
Architectural Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XXV).

[109] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, and
Vijayalakshmi Srinivasan. 2014. NDC: Analyzing the Impact of 3D-Stacked
Memory + Logic Devices on MapReduce Workloads. In Proc. of the IEEE Intl.
Symp. on Performance Analysis of Systems and Software (ISPASS).

[110] M.K. Qureshi and Y.N. Patt. 2006. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches.
In Proc. of the 39th annual IEEE/ACM intl. symp. on Microarchitecture (Proc.
MICRO-39).

[111] Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping. In Proc. of the 51st annual IEEE/ACM intl.
symp. on Microarchitecture (Proc. MICRO-51).

[112] Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address
cache. In Proc. of the 46th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-46).

[113] Steven K Reinhardt, James R Larus, and David A Wood. 1994. Tempest and
Typhoon: User-level shared memory. In Proc. of the 21st annual Intl. Symp. on
Computer Architecture (Proc. ISCA-21).

[114] Thomas J Repetti, João P Cerqueira, Martha A Kim, and Mingoo Seok. 2017.
Pipelining a triggered processing element. In Proc. of the 50th annual IEEE/ACM
intl. symp. on Microarchitecture (Proc. MICRO-50).

[115] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,
Jose A Joao, and Moinuddin K Qureshi. 2018. Morphable counters: Enabling
compact integrity trees for low-overhead secure memories. In Proc. of the 51st
annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-51).

[116] Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling Ways
and Associativity. In Proc. of the 43rd intl. symp. on Microarchitecture.

[117] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning. In Proc. of the 38th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-38).

[118] Somayeh Sardashti and David A Wood. 2013. Decoupled compressed cache:
exploiting spatial locality for energy-optimized compressed caching. In Proc. of
the 46th annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-46).

[119] Mahadev Satyanarayanan, Nathan Beckmann, Grace A. Lewis, and Brandon
Lucia. 2021. The Role of Edge Offload for Hardware-Accelerated Mobile Devices.
In HotMobile.

[120] Brian C. Schwedock and Nathan Beckmann. 2020. Jumanji: The Case for Dy-
namic NUCA in the Datacenter. In Proc. of the 53rd annual IEEE/ACM intl. symp.
on Microarchitecture (Proc. MICRO-53).

[121] André Seznec. 1993. A case for two-way skewed-associative caches. In Proc. of
the 20th annual Intl. Symp. on Computer Architecture.

[122] André Seznec. 1994. Decoupled sectored caches: conciliating low tag implemen-
tation cost. In Proc. of the 21st annual Intl. Symp. on Computer Architecture (Proc.
ISCA-21).

[123] Ofer Shacham, Zain Asgar, Han Chen, Amin Firoozshahian, Rehan Hameed,
Christos Kozyrakis, Wajahat Qadeer, Stephen Richardson, Alex Solomatnikov,
Don Stark, Megan Wachs, and Mark Horowitz. 2009. Smart memories poly-
morphic chip multiprocessor. In Proc. of the 46th Design Automation Conf. (Proc.
DAC-46).

[124] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arith-
metic in crossbars. (2016).

[125] Chaoqun Shen, Congcong Chen, and Jiliang Zhang. 2021. Micro-architectural
cache side-channel attacks and countermeasures. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC).

[126] Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2017. Chasing away
rats: Semantics and evaluation for relaxed atomics on heterogeneous systems.
In Proc. of the 44th annual Intl. Symp. on Computer Architecture (Proc. ISCA-44).

[127] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Pageforge: a
near-memory content-aware page-merging architecture. In Proc. of the 50th
annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-50).

[128] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating graph processing using ReRAM. In Proc. of the 24th IEEE intl. symp.
on High Performance Computer Architecture (Proc. HPCA-24).

[129] Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian, David
Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache automaton. In
Proc. of the 50th annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-
50).

[130] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. 2003.
WaveScalar. In Proc. of the 36th annual IEEE/ACM intl. symp. on Microarchitecture
(Proc. MICRO-36).

[131] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, et al. 2021.
Prodigy: Improving the Memory Latency of Data-Indirect Irregular Workloads
Using Hardware-Software Co-Design. In Proc. of the 27th IEEE intl. symp. on

High Performance Computer Architecture (Proc. HPCA-27).
[132] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christopher Batten.

2021. Ultra-Elastic CGRAs for Irregular Loop Specialization. In Proc. of the 27th
IEEE intl. symp. on High Performance Computer Architecture (Proc. HPCA-27).

[133] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-
Defined Cache Hierarchies. In Proc. of the 44th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-44).

[134] Po-An Tsai, Changping Chen, and Daniel Sanchez. 2018. Adaptive Scheduling
for Systems with Asymmetric Memory Hierarchies. In Proc. of the 51st annual
IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-51).

[135] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the Memory
Hierarchy for Modern Languages. In Proc. of the 51st annual IEEE/ACM intl.
symp. on Microarchitecture (Proc. MICRO-51).

[136] Po-An Tsai and Daniel Sanchez. 2019. Compress objects, not cache lines: An
object-based compressed memory hierarchy. In Proc. of the 24th intl. conf. on
Architectural Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XXIV).

[137] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B Gibbons, and Onur
Mutlu. 2018. A case for richer cross-layer abstractions: Bridging the semantic
gap with expressive memory. In Proc. of the 45th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-45).

[138] Dani Voitsechov and Yoav Etsion. 2014. Single-graph multiple flows: Energy
efficient design alternative for GPGPUs. (2014).

[139] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. 1997. Baring it all
to software: Raw machines. IEEE Computer 30, 9 (1997).

[140] Zhengrong Wang and Tony Nowatzki. 2019. Stream-based memory access
specialization for general purpose processors. In Proc. of the 46th annual Intl.
Symp. on Computer Architecture (Proc. ISCA-46).

[141] Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. 2022. Near-Stream
Computing: General and Transparent Near-Cache Acceleration. (2022).

[142] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony
Nowatzki. 2021. Stream Floating: Enabling Proactive and Decentralized Cache
Optimizations. In Proc. of the 27th IEEE intl. symp. on High Performance Computer
Architecture (Proc. HPCA-27).

[143] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki.
2020. A hybrid systolic-dataflow architecture for inductive matrix algorithms.
In Proc. of the 26th IEEE intl. symp. on High Performance Computer Architecture
(Proc. HPCA-26).

[144] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. 2017. NOVA-
Fortis: A Fault-Tolerant Non-Volatile Main Memory File System. In Proc. of the
26th Symp. on Operating System Principles (Proc. SOSP-26).

[145] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017.
Secure hierarchy-aware cache replacement policy (SHARP): Defending against
cache-based side channel attacks. In Proc. of the 44th annual Intl. Symp. on
Computer Architecture (Proc. ISCA-44).

[146] Yifan Yang, Joel S Emer, and Daniel Sanchez. 2021. SpZip: Architectural Support
for Effective Data Compression In Irregular Applications. In Proc. of the 48th
annual Intl. Symp. on Computer Architecture (Proc. ISCA-48).

[147] Younis A. Younis, Kashif Kifayat, and Abir Hussain. 2017. Preventing and
Detecting Cache Side-Channel Attacks in Cloud Computing. In Proceedings
of the Second International Conference on Internet of Things, Data and Cloud
Computing.

[148] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.
Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-
oriented Programmable Processing in Memory. In Proc. HPDC.

[149] Dan Zhang, Xiaoyu Ma, and Derek Chiou. 2016. Worklist-directed Prefetching.
IEEE Computer Architecture Letters (2016).

[150] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018. Minnow:
Lightweight Offload Engines for Worklist Management and Worklist-Directed
Prefetching. In Proc. of the 23rd intl. conf. on Architectural Support for Program-
ming Languages and Operating Systems (Proc. ASPLOS-XXIII).

[151] Guowei Zhang, Virginia Chiu, and Daniel Sanchez. 2016. Exploiting Semantic
Commutativity in Hardware Speculation. In Proc. of the 49th annual IEEE/ACM
intl. symp. on Microarchitecture (Proc. MICRO-49).

[152] Guowei Zhang,WebbHorn, and Daniel Sanchez. 2015. Exploiting commutativity
to reduce the cost of updates to shared data in cache-coherent systems. In Proc.
of the 48th annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-48).

[153] Guowei Zhang and Daniel Sanchez. 2018. Leveraging Hardware Caches for
Memoization. Computer Architecture Letters (CAL) 17, 1 (2018).

[154] Guowei Zhang and Daniel Sanchez. 2019. Leveraging caches to accelerate
hash tables and memoization. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 440–452.

[155] Jialiang Zhang, Michael Swift, and Jing (Jane) Li. 2022. Software-Defined Ad-
dress Mapping: A Case on 3D Memory. In Proc. of the 27th intl. conf. on Ar-
chitectural Support for Programming Languages and Operating Systems (Proc.

täkō: A Polymorphic Cache Hierarchy for General-Purpose Optimization of Data Movement ISCA ’22, June 18–22, 2022, New York, NY, USA

ASPLOS-XXVII).
[156] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant Persistent

Memory Programming Library. In Proc. of the USENIX Annual Technical Conf.
(Proc. USENIX ATC).

[157] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing commu-
nication for PIM-based graph processing with efficient data partition. In Proc.
of the 24th IEEE intl. symp. on High Performance Computer Architecture (Proc.
HPCA-24).

	Abstract
	1 Introduction
	2 täkō Overview
	3 Motivation
	3.1 Example program: Lossy compression.
	3.2 täkō to the rescue!
	3.3 Results and comparison to prior work.
	3.4 Discussion.

	4 täkō Programming interface
	4.1 register/unregister.
	4.2 Morph objects.
	4.3 Callbacks.
	4.4 flushData.
	4.5 Discussion and roads not taken.

	5 täkō Architecture
	5.1 Core modifications for täkō.
	5.2 Cache modifications for täkō.
	5.3 Engine microarchitecture.
	5.4 Putting it all together.

	6 System Integration
	7 Experimental Methodology
	8 Evaluation — Case Studies on täkō
	8.1 Accelerating commutative scatter-updates.
	8.2 Accelerating graph traversals via streams.
	8.3 System support: Transactions in direct-access NVM.
	8.4 Detecting side-channel attacks.

	9 Evaluation — Sensitivity Studies
	10 Related Work
	11 Conclusion and Future Work
	References

