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Abstract—The rising cost of data movement poses a significant
challenge to future computing systems. The call to arms for novel
data-centric systems has spawned a wave of near-data computing
(NDC) architectures that move compute closer to data. Despite
large benefits promised by NDC, prior designs suffer from limited
applicability and difficult programming.

This paper identifies the commonalities and differences across
NDC designs to develop Leviathan, a unified architecture and
programming interface for near-cache NDC. We build a taxonomy
of NDC and identify the key dimensions as what, where, and when
to compute. Leviathan provides a simple reactive-programming
interface and automatically executes actions near data at the
right time and place. The ability to integrate multiple NDC
paradigms makes Leviathan the only general-purpose system to
support a variety of specialized NDC designs. Across a range of
NDC-specialized applications, Leviathan improves performance
by 1.5×–3.7× and reduces energy by 22%–77% vs. a baseline
multicore, while adding only ≈6% area compared to the last-level
cache.

Index Terms—near-data computing, data-centric computing,
data locality, cache hierarchy

I. INTRODUCTION

Computer systems are increasingly bottlenecked by the
rising cost of data movement [20, 28, 32, 44, 84]. The
inclusion of data-movement accelerators in recent commercial
processors [15, 41, 72] indicates that traditional CPU scaling
can no longer meet processing demands. Addressing the
data-movement challenge has sparked a wave of architecture
innovation on data-centric computing. A popular approach is
near-data computing (NDC), which reduces data movement by
moving compute closer to data, unlike conventional memory
hierarchies that pull data closer to compute.

Traditional near-memory NDC shows large benefits for
applications with little data reuse, but it fails to exploit the
locality present in most workloads. Blindly moving all compute
to main memory can actually harm performance [4, 34, 47,
76, 91]. This limitation is addressed by near-cache NDC [1, 2,
5, 6, 8, 18, 22, 24, 33, 37, 38, 42, 43, 47, 48, 52, 56, 57, 64,
66, 69, 74, 77, 85, 88–90, 92–95], which augments a cache
hierarchy with processing capability. Near-cache NDC allows
systems to move compute closer to data while also exploiting
locality, unlocking the full potential of data-centric computing.
The problem: Prior NDC is too limited and hard to use.
Despite the large benefits promised by NDC, there remain
significant roadblocks to its practical adoption in general-
purpose systems. Most proposals target a narrow range of

∗This work was completed while the author was affiliated with Carnegie
Mellon University.

L1dL1i

L2

LLC Bank

Engine

Core

NoC

Code

Fig. 1: We divide prior near-data computing (NDC) into four
paradigms. Leviathan supports all paradigms, executing code
on near-data engines at the time and location dictated by the
paradigm. Programmers write Leviathan programs via a simple
reactive-programming interface, and Leviathan hardware ensures
that objects are efficiently packed within cache banks.

application domains and only support a subset of NDC’s design
paradigms (Table I). But it is not scalable or practical to add new
hardware for every potential application domain. Some recent
work has started to address this challenge via programmable
NDC, where software can configure the operations that execute
near data [6, 11, 47, 54, 66, 79, 81, 90]. However, existing
programmable NDC is still insufficient because it only targets
a limited subset of the broad NDC design space.

Beyond limited scope, prior designs also expose too many
microarchitectural details to the programmer. Specifically, since
existing NDCs rely on the underlying caches or DRAM for
data storage, their designs often require data to fit within and
align to cache lines [18, 31, 47, 52, 66, 94, 95]. Exposing
such microarchitectural details to software, let alone forcing
programmers to reason about them, increases programming
difficulty and makes NDC unapproachable.
Opportunity and insight. We observe that neither of these
issues is fundamental to NDC. With the goal of designing a
practical NDC system, we first perform an extensive study on
prior NDC proposals and build a taxonomy that captures their
similarities and differences (Sec. II). We find that prior designs
largely fall into only one of four main paradigms (Fig. 1), but
many applications require multiple paradigms to see the full
benefits of NDC.

Prior work has treated each paradigm separately, but we
observe that a similar structure underlies them. Each paradigm
can be roughly broken down into three components: what to
execute, where to execute, and when to execute. By placing
general-purpose hardware near caches, programmable NDC
addresses “what,” but “when” and “where” remain unsolved.



1 class Actor: # Combines data and near-data action
2 int data
3
4 # Action executes near ‘‘data’’ in the hierarchy
5 void action(int update):
6 atomicAdd(data, update)
7
8 # Core offloads an action to execute on an ‘‘actor’’
9 invoke actor->action(newUpdate)

Fig. 2: Example implementation of a remote memory operation
(RMO) in Leviathan using the actor interface. The actor
encompasses a near-data action and the data which the action
accesses. A core (or other action) explicitly invokes the action to
execute near the data.

A system can support all paradigms only if it has flexibility to
trigger computation at the right time and place.

The other challenge is to avoid exposing microarchitectural
details to the programmer. The main issue is that NDC requires
data to be entirely within a single cache bank to maximize
locality. Prior work put this burden on the programmer [18, 31,
47, 52, 66, 94, 95], requiring them to be aware of and optimize
for the cache microarchitecture, but this need not be the case.
Instead, the programmer can tell the NDC system the structure
of its data, and the system itself can optimize locality.
Our approach. We propose Leviathan, a polymorphic cache
hierarchy that unifies a wide range of prior NDC designs
under a simple, actor-based reactive-programming interface.
Fig. 1 illustrates a Leviathan system executing exemplar
NDC workloads from each paradigm in our taxonomy. Task
offload involves short tasks explicitly invoked by a core
(or another NDC action) to execute near a target object
in the hierarchy. Long-lived workloads perform large tasks
independently from cores and run near memory or cache
to avoid polluting cores’ caches. Data-triggered actions are
implicitly executed on objects as they move through the
cache hierarchy. And streaming allows a decoupled, near-data
producer to continually feed a core with data.

To support all paradigms, Leviathan provides a reactive-
programming interface. In actor-based reactive programming,
an actor is an object associated with specific actions that are
invoked by external triggers [61]. In Leviathan, actions are NDC
functions executed near data in response to paradigm-specific
triggers. Fig. 2 shows an example actor which implements
a remote memory operation (RMO). The actor includes the
data to be accessed and a function that implements the desired
RMO (atomic add in this example).

Leviathan provides data locality transparently to program-
mers. Leviathan can manage data itself because it knows an
action’s access granularity — i.e., the actor’s object. Leviathan’s
memory allocator ensures that objects are located entirely
within one cache bank to maximize locality (right of Fig. 1).

Leviathan hardware takes inspiration from prior NDCs
that incorporate programmable compute within the cache
hierarchy [11, 47, 66, 80] by distributing near-data engines to
execute actions on actors. The engines also contain hardware
scheduling logic that, in combination with microarchitectural
support in the cores and caches, execute code near data at the
right time and place. We explain how each NDC paradigm
maps to a combination of actions and triggers, and describe

the necessary runtime and microarchitectural support.
The end result is a polymorphic cache hierarchy that unifies

prior NDC systems on the same hardware while providing a
simple-to-use programming interface. Leviathan is the first
system to support all NDC paradigms. Unifying all paradigms
in a single system is essential to reach the true potential of NDC,
particularly on applications that require multiple paradigms
(see Sec. IV).

Contributions. This paper contributes the following:
• NDC taxonomy. We analyze prior NDCs to identify their

similarities and differences. This leads us to the necessary
mechanisms for a practical, unified NDC system.

• Programming interface. We propose a simple and flexible
reactive-programming interface which allows programmers
to implement a wide range of NDC applications without
worrying about hardware details.

• Architecture. We propose a single architecture that supports
all four NDC paradigms and provides microarchitectural
support to control data placement so that objects reside
entirely within the same cache bank.

• Evaluation. We demonstrate Leviathan’s benefits through
four diverse case studies, across which Leviathan provides
1.5×–3.7× speedup and 22%–77% energy savings.

Summary of results. We evaluate Leviathan on four case studies
to demonstrate (i) the importance of supporting multiple NDC
paradigms on a single system, (ii) the ease of developing a
Leviathan application with its unified programming interface,
and that (iii) Leviathan improves performance while hiding
microarchitectural details from the programmer.
• Commutative scatter-updates: Leviathan implements

PHI [52], an accelerator which uses multiple NDC
paradigms to improve the performance of commutative
scatter-updates in graph applications. Leviathan is the first
system to provide all the necessary NDC support in a
general-purpose way, achieving 3.7× speedup.

• Near-cache data transformation: Leviathan decompresses
objects as they move through the hierarchy. Leviathan’s
programming interface abstracts away microarchitectural
details to handle objects of any size without added program-
ming complexity, and Leviathan achieves 2.4× speedup.

• Hash-table lookups: Leviathan reduces on-chip network
overheads when traversing hash-table buckets by accelerat-
ing lookups near cache. Leviathan performs well across a
wide range of object sizes, achieving up to 2.0× speedup.

• Decoupled graph traversals: Leviathan implements
HATS [51], a complex decoupled streaming application,
achieving 1.7× speedup. Leviathan’s streaming interface al-
lows arbitrary data access patterns, unlike prior affine-based
designs [80, 81], and its stream interface is much simpler
to program and more effective than prior general-purpose
NDC designs that do not explicitly support streams [66].

Leviathan adds just ≈6% area overhead compared to a baseline
multicore’s last-level cache, similar to prior NDC systems, and
achieves performance within 4.8% of using an idealized near-
data engine.
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TABLE I: Taxonomy of prior work on near-data computing (NDC) within the memory hierarchy.

NDC paradigm Small
tasks?

Talks to
cores?

Prior work

Task offload ✓ ✓ Remote memory operations (RMOs) [39, 67], Minnow [89, 90], hash tables [95], memoization [94],
BSSync [43], pointer chasing [31, 35], data remapping [7], Compute Caches [1], Livia [47], Dist-DA [11]

Long-lived workloads ✗ ✗ PageForge [71], SerDes [37, 58], garbage collection [48], COREx [26]
Data-triggered actions ✓ ✗ Prefetching [5, 6, 74, 88], compression [8, 24, 56, 57, 64, 77], HTM [92], coherence and synchronization [2,

22, 33, 42, 59, 69, 85, 93], Impulse [18], Relational Memory [62], Tvarak [38], PHI [52], täkō [66]
Streaming ✗ ✓ Stream Dataflow [54], Stream ISA [79], Stream Floating [81], Near-Stream Computing [80], Task

Stream [19], Infinity Stream [78], HATS [51], SpZip [86], Cohort [82]

(a) Paradigms differ in when/where
actions execute as well as commu-
nication patterns with cores.

Core

L1dL1i

LLC Bank

NDC 
Hardware

NoC

Offload 
RMW

1

Atomic 
RMW

2

Offload 
RMW

1

L2

(b) Task offload: cores
push short operations to
caches, e.g., atomic add.

NoC

Core

L1i

L2
NDC 

HardwareL1d

Serialize 
packet

LLC Bank

(c) Long-lived: near-data
thread avoids cache pol-
lution, e.g., serialization.

Core

L1dL1i

L2 NDC 
Hardware

NoC

Miss2

Load1

Load 
from LLC

3a

Inform 
NDC

3b

Prefetch4

LLC Bank

(d) Data-triggered: com-
pute when data moves,
e.g., prefetching.

NoC

Core

L1dL1i

L2
NDC 

Hardware

Consume 
stream & 
compute

Produce 
stream

NDC Buffer

LLC Bank

(e) Streaming: caches
push data to cores, e.g.,
CSR traversal.

Fig. 3: Breakdown of NDC taxonomy across paradigms.

II. BACKGROUND

With the goal of developing a unified NDC system (Fig. 3a),
our first step was exploring the diverse prior work on near-data
computing. We found that prior designs largely fall into one
of four main paradigms:
• Task offload. A core explicitly offloads a small amount of

work into the memory hierarchy (e.g., atomic read-modify-
write) and often expects a response quickly.

• Long-lived workloads. A long-lived thread runs within the
memory hierarchy, typically processing a large amount of
data (e.g., packet serialization) without frequent communi-
cation to or from cores.

• Data-triggered tasks. Computation is triggered when data
moves through the hierarchy (e.g., prefetching). Tasks are
short-lived and do not communicate at all with cores.

• Streaming. A near-data producer generates a stream of data
to be processed by a separate consumer (e.g., decoupled
access-execute). Tasks are long-lived and communicate
continuously with cores.

Table I provides examples of recent NDC designs and where
they fit in this taxonomy.

A. A Taxonomy of Near-Data Computing

Task offload. Task offload encompasses designs where a core
or other near-data task offloads a small amount of work
into the memory hierarchy to execute closer to a specific
piece of data. The traditional example is remote memory
operations (RMOs), where a core requests a single atomic
operation to execute directly on the data within the cache or
main memory [39, 67] (Fig. 3b). This avoids the expensive

ping-ponging of data between cores for heavily shared data.
Over time, offloaded tasks have become increasingly complex,
potentially involving many operations, multiple locations in
the memory hierarchy, and tasks spawning additional tasks
(e.g., for pointer chasing [31, 35]). A major challenge in these
designs is dynamically determining the right location to execute
a task; e.g., where is the data now?
Long-lived workloads. In contrast to task offload, long-lived
workloads execute long computations that operate on large
amounts of data. They run independently of cores without
direct communication (Fig. 3c). Typically, applications in this
paradigm perform some background processing and run low in
the cache hierarchy to avoid polluting private caches. One
example is serialization/deserialization (SerDes), where an
object is transformed near memory while the core continues to
operate asynchronously [37, 58]. Long-lived workloads often
want to execute at a fixed location in the memory hierarchy (e.g.,
LLC or memory controller). Accordingly, the system needs to
allow software to request a specific location for execution.
Data-triggered actions. These are actions triggered implicitly
by data movement within the memory hierarchy, not explicitly
by software. Typically, the triggering mechanism is when data
is inserted in or evicted from a cache bank. A popular example
is hardware prefetching (Fig. 3d), where the prefetcher monitors
cache misses and optionally triggers additional data requests
before the underlying core needs the data.

The benefits of data-triggered actions are increased visibility
and control over data movement. For example, hardware
compression has been proposed to decompress data as it moves
from main memory to the core, improving the effective capacity
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of main memory while avoiding the need to decompress data
on cache hits [8, 24, 56, 57, 64, 77].

The unique characteristic of data-triggered actions is that
they execute when data moves, which is traditionally invisible
to software. Hardware support is required to trigger actions
when data moves across levels of the memory hierarchy.
Streaming. Streaming is when applications access data in a
pattern that can be decoupled from other application logic.
Typically confined to simple affine patterns, recent work has
proposed general-purpose streaming engines [54, 79–81] and
sophisticated stream logic that supports complex, irregular
access patterns [51, 88]. The benefits of streaming are that
the stream producer can run ahead of the consumer to hide
memory latency, control flow is regularized on the consumer,
and stream generation can often use simplified hardware logic.

The unique characteristic of streaming as an NDC paradigm
is that the stream is long-lived within the memory hierarchy
and communicates frequently with cores (Fig. 3e), pushing
data and waiting for an acknowledgment that data has been
consumed. Streams benefit from explicit ISA support for this
frequent communication [79].

B. Applications need multiple NDC paradigms

Fig. 3 separates the four NDC paradigms, but they often
interact and do not operate independently. Prior work shows
significant benefits from combining multiple paradigms.

PHI [52], discussed further below (Sec. IV), combines task
offload and data-triggered paradigms. PHI offloads atomic
updates near data (task offload) to avoid ping-ponging of data
between private caches, which is important because frequent,
concurrent updates are expected. It also modifies cache insertion
and eviction (data-triggered) to initialize data and decide upon
eviction how to apply updates, saving memory bandwidth.

Similarly, Near-Stream Computing (NSC) [80] combines
both task offload and streaming. NSC observed that it is
more efficient to process stream output near the cache than on
a core. So NSC offloads tasks to the stream’s location, reducing
data movement and avoiding pollution of cores’ private caches.

Finally, Dist-DA [11] provides a flexible design for sup-
porting task offload and long-lived workloads by providing a
common mechanism for cores to offload work near caches.

C. Limitations of prior work

Despite providing large benefits, prior NDC designs suffer
two major deficiencies: scope and software abstraction. They
benefit too few applications to justify integration in a general-
purpose system, and they expose inessential hardware details
to software, complicating the programming interface.
Limited scope. Every NDC design requires new hardware
and interfaces across the system stack. The simplest designs
are ISA extensions that enable single operations on cached
data (e.g., RMOs); these are broadly useful and easy to
implement. However, more complex tasks (e.g., SerDes) cannot
be efficiently reduced to RMOs and require much more
disruptive changes that benefit fewer applications. Recent
programmable designs require the most disruptive changes

of all and still only target a subset of the NDC design space [6,
11, 47, 54, 66, 79, 81, 90]. Many only support a single
paradigm: e.g., task offload [47], streams [54, 79, 81], or data-
triggered [6, 66, 90]. A few support two paradigms (Sec. II-B),
but no prior NDC system supports all paradigms.

To justify the cost of adding new features to a general-
purpose processor, features must benefit a wide range of
applications. It is simply infeasible to re-design hardware and
software for every potential application of NDC. However,
that is exactly the trend in prior work (accelerators for
graphs, compression, etc), and the reason it is unlikely to
see widespread adoption.
Poor hardware abstraction. One of the consistent lessons in the
history of computer architecture is the importance of ease of
programming to the real-world success of hardware. Hardware
details are typically abstracted away from application software,
so that the programmer can focus on developing application
features and only rarely worry about microarchitecture for
performance-critical code. Exposing microarchitectural details,
such as the cache’s line size, is unnatural for a programming
interface, but that is exactly what prior work on NDC does.

Since near-cache NDCs are co-located with cache banks, it
is highly desirable for an action’s data to reside entirely in one
cache bank or tile. Prior NDCs have placed that burden on
the programmer, forcing applications to properly align and pad
data to cache lines or suffer massive performance penalties [18,
31, 47, 52, 66, 94, 95]. This low-level programming interface
limits NDC to a narrow subset of programmers and adds burden
when porting code across microarchitectures.
Incompatibility of programming interfaces. Prior NDC inter-
faces are ad hoc and make paradigms mutually incompatible.
For a rough analogy, task-offload is akin to calling a function;
long-lived is like spawning a thread; data-triggered is like
registering an interrupt handler; and streaming is like opening
a network socket. These are all different beasts. We aim to
bring them under one roof and let them work together, which
is essential for applications that require multiple paradigms
and to enable rapid exploration of different paradigms.

D. Actor-based reactive programming

Reactive programming is a model for designing event-driven
applications [10]. While traditionally geared towards large-
scale distributed applications [61], reactive programming can
be a good fit for any application that breaks down into units
of work that often execute asynchronously from each other.
Accordingly, we find that reactive programming enables a clean
description of NDC functions.

There are different variations of reactive programming,
including, but not limited to, actor-based [29, 61], object-
oriented [63, 65], functional [25], and imperative [23]. In actor-
based reactive programming, messages are sent to actors to
trigger actions on the actors’ data. Each NDC paradigm involves
triggering actions, typically on a specific piece of data, which
aligns with the design of actors. Also, the flexibility permitted
in message creation (e.g., core-triggered vs. data-triggered) and
composition (e.g., variable number of arguments) enable all
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TABLE II: Actions associated with each NDC paradigm.

Paradigm Actions

Task offload Arbitrary actor-specific function
Long-lived Arbitrary actor-specific function
Data-triggered Actor constructor & destructor
Streaming Actor-specific producer function

NDC paradigms to fit within the model. Consequently, we
find that actor-based reactive programming is a good fit for
unifying NDC paradigms.

III. LEVIATHAN OVERVIEW

Leviathan’s goal is to provide a polymorphic cache hierarchy
that unifies prior NDC paradigms and is easy to program.
Like recent programmable NDC systems [6, 11, 47, 54, 66, 79,
81, 90], Leviathan adds general-purpose engines near the cache
banks of a multicore, letting software run arbitrary compute
near data. To support all four NDC paradigms, Leviathan further
adds microarchitectural support to execute software at the right
time and place. And Leviathan exposes all this capability to
programmers via a simple programming interface that hides
unnecessary microarchitectural detail from software.
Programming interface. The programming model comprises an
object-oriented memory allocator and an actor-based interface
for each of the NDC paradigms. Each paradigm operates
on actors provided by the allocator to ensure that Leviathan
maintains intra-bank data locality.

NDC paradigms mainly consist of three components: what
action to execute, when to execute it, and where to execute it. In
Leviathan, the application provides the actions to execute and
indicates the NDC paradigm to use. It is the responsibility of
Leviathan’s runtime and hardware support to correctly execute
the action, depending on the paradigm.

Table II breaks down the actions associated with each
paradigm, and Fig. 2 gives pseudocode for an example task-
offload actor. Task offload and long-lived workloads both
involve actor-specific actions explicitly triggered by a core
or another near-data action, so Leviathan needs to execute
the action when requested at the appropriate location. Data-
triggered NDC involves two actions — actor constructors
and destructors — that are triggered on specified actors when
they are either inserted in or evicted from the cache. And
streaming involves a producer (long-lived workload) and
consumer (regular thread) along with additional support to
push and pop objects from a shared communication channel.
Hardware. On top of a baseline, cache-coherent multicore,
each tile is augmented with a near-data engine (Fig. 1).
The commonality across NDC paradigms is executing an
application-defined action on a specified object, so Leviathan’s
engine contains a lightweight, programmable processor to
execute actions. The difference across paradigms is the way in
which actions are triggered. This is handled by the engine’s
hardware scheduler, which provides microarchitectural support
for each paradigm. The other main engine components are a
small, coherent cache and a task-context buffer to manage local
state for currently running actions. Additional minor support
is also added to the cores and caches.

IV. MOTIVATION

We demonstrate the power of a unified NDC system by
implementing a design that requires functionality from multiple
paradigms. Leviathan’s unification of all four paradigms is
essential to providing a truly polymorphic cache hierarchy.

A. Accelerating commutative scatter-updates

PHI [52] is a push-based cache hierarchy optimized for
commutative scatter-updates, e.g., in graph applications. In PHI,
the cache is a large write-combining buffer for commutative
operations (e.g., addition) that contains partial updates (i.e.,
deltas) instead of raw data. When cache lines are evicted, PHI
either immediately applies the updates in-place or logs them
for later processing [14, 40], dynamically choosing the policy
that minimizes memory bandwidth.

PHI spans multiple NDC paradigms. PHI’s key mechanism
is data-triggered: PHI changes cache insertion to initialize
lines and changes eviction to perform updates in-place or log
them. However, a large portion of PHI’s benefits come from
task offload by using remote memory operations (RMOs) [39,
67] to execute read-modify-write (RMW) operations within
the cache. Offloading RMW operations to the shared cache
both reduces ping-ponging of data between cores and avoids
expensive fenced atomics on the cores. This aspect of PHI is
not emphasized in prior work, which assumed that the cache
supports whichever RMOs are needed. Given the diversity of
graph applications [13], it is essential that NDC systems support
multiple paradigms to make techniques like PHI practical.

LLC Bank
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NoC

Fig. 4: Leviathan implements
PHI [52] by enabling multiple
NDC paradigms to work to-
gether. The figure demonstrates
how an offloaded RMW task
leads to a data-triggered action
that implements PHI’s insertion
semantics. A similar process
happens on cache evictions.

B. Leviathan’s implementation of PHI

Fig. 4 illustrates Leviathan’s implementation of PHI, where
task offload and data-triggered actions work together to treat
the LLC cache as a write-combining buffer. 1 A core offloads
a RMW task to this LLC bank to perform an atomic RMW
on an object; e.g., updating a vertex’s rank in PageRank (see
Fig. 2 for pseudocode). 2 The RMW task loads an object
which is not cached. 3 The cache miss triggers an insertion
action; several objects are packed into one cache line. 4 The
insertion action (i.e., object constructor) initializes each object
with zero and completes the cache insertion. 5 The RMW
task now updates the object.

As long as the objects remain cached, subsequent RMW
tasks will directly update the same objects without triggering
further insertion actions. And when the objects are finally
evicted, the destructor action will either update the values
in-place, or log them for later (not shown).
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C. Why Leviathan?

PHI’s proposed design requires significant hardware and
software changes to a multicore system to benefit a single
application domain. Cache-triggered operations, RMOs, and a
new CPU instruction are all needed to support just a subset of
graph processing applications. No prior general-purpose system
can fully support PHI’s design. Leviathan’s multiparadigm
design makes it the only general-purpose system that can
implement PHI, along with other multiparadigm NDCs.

D. Evaluation

We evaluate Leviathan to demonstrate the benefits of multi-
paradigm support. The comparisons are a baseline implementa-
tion of push-based PageRank and täkō’s [66] implementation of
PHI. täkō is a programmable NDC for data-triggered actions.
Since täkō does not support task offload, it approximates RMOs
by assuming cores support atomic instructions without memory
fences (i.e., relaxed atomics [9, 70]). We evaluate täkō with
and without relaxed atomics to demonstrate the importance of
this dimension of PHI.
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Fig. 5: PHI results for PageRank on a 4M vertex, 40M edge
synthetic graph. Leviathan improves performance by 3.7×.

Fig. 5 shows results for PageRank with 16 threads. (Method-
ology in Sec. VII.) Leviathan achieves 3.7× speedup, whereas
täkō gets 3.1× speedup with relaxed atomics and 1.4× without.
Leviathan also reduces energy by 22%, vs. 12% for täkō.
Finally, Leviathan comes within 1.3% speedup and energy of
an idealized engine, demonstrating that Leviathan’s modest
engines are sufficient for performant NDC.

Leviathan achieves its benefits by (i) reducing memory
accesses with data-triggered actions; (ii) eliminating memory-
fence overheads with task offload; and (iii) reducing NoC
traffic with task offload. Both Leviathan and täkō reduce
memory accesses by conditionally binning updates on cache
evictions using data-triggered actions. The benefit of eliminat-
ing memory fences is shown by comparing täkō Fence and täkō
Relax. Fences serialize memory accesses and impose a severe
performance penalty; relaxed atomics are essential for täkō to
realize large benefits. Meanwhile, Leviathan simply offloads
tasks near data, eliminating the need for relaxed atomics while
also reducing NoC traffic by 40% vs. täkō. These benefits are
unachievable in täkō because it does not support task offload.
Discussion. All in all, Leviathan’s ability to support multiple
NDC paradigms enables a variety of performance optimizations
that are unsupported by prior NDC systems. Leviathan is the
only multi-paradigm, general-purpose NDC system, and thus
the first truly polymorphic cache hierarchy.

V. LEVIATHAN PROGRAMMING INTERFACE

Leviathan’s programming interface works to overcome the
two major limitations of prior work: scope and hardware
abstraction. Leviathan extracts the commonalities across NDC
paradigms while supporting their differences. The commonali-
ties are actors with paradigm-specific, near-data actions that
execute asynchronously from the main thread and communicate
results via futures. The key differences across paradigms are
when and where to execute the actions. Leviathan’s interface
abstracts hardware by letting applications specify the data
it wants to access, and then Leviathan performs all data
management behind the scenes via a custom memory allocator.

A. Building blocks

1) Actors
The underlying mechanism for implementing all paradigms

is the actor model [29, 61]. An actor is an object (i.e., class)
associated with one or more near-data actions (i.e., methods).
Note that we distinguish “actor” and “object”, where object
just refers to data, because not all objects in Leviathan are
actors (specifically, with streams, as discussed in Sec. V-B3).

A programmer uses Leviathan by defining an actor class
which implements the necessary actions for the paradigm of
interest (e.g., Fig. 2). All actor instances are allocated with
Leviathan’s allocator (Sec. V-A3) so that data management
is hidden from the application. Near-data actions are then
executed on allocated actor instances at a time and place in the
cache hierarchy according to the designated NDC paradigm.

2) Communicating results with Futures

1 class Future<R>:
2 R wait() # for receiver
3 void send(R result) # for sender

Fig. 6: Leviathan’s Future interface.

Task offload and streaming require the ability to commu-
nicate results from near-data actions back to a core. For this
functionality, Leviathan provides a Future<R> (Fig. 6) which
is filled with an object of type R from an action running
asynchronously from the core. To receive a result, the core
simply waits on the Future<R> until the object is available.

3) Memory allocator
The purpose of Leviathan’s memory allocator is to abstract

away microarchitectural details so that the application can
specify the actors it wants to operate on, and Leviathan manages
packing and padding of their data into cache lines.

1 class Allocator <T>:
2 T* allocate()
3 void deallocate(T* object)

Fig. 7: Leviathan’s object-oriented memory allocator.

Application interface. Leviathan’s Allocator<T> (Fig. 7) pro-
vides simple methods to allocate and deallocate objects of type
T. Depending on the NDC paradigm, applications may not use
the allocator directly; data-triggered actors are allocated and
freed implicitly by hardware.

6



0 64 128
24-byte objects

Action loses locality

Action
Normal array Objects split over LLC banks

(a) Allocating a normal array of objects splits objects across LLC
banks, losing data locality for NDC actions.

0 64 128
24-byte objects

Objects always local
w/ Leviathan allocator Objects padded automatically

Action

(b) Leviathan’s allocator pads objects to maintain data locality for
NDC actions.

Fig. 8: Padding objects in the cache is necessary to maintain data
locality for NDC actions. This example demonstrates allocating
24B objects for a cache with 64B lines.

Implementation. The allocator has three jobs: padding objects
to be cache-aligned; mapping large objects to the same LLC
bank; and packing objects to not waste main memory.

Small objects. When objects smaller than a cache line do not
evenly divide the line size, allocating an array of objects
normally will result in some objects spanning multiple lines
(see Fig. 8a). This hurts NDC because actions are forced to
fetch part of the object from another cache bank, rather than
finding all data locally. To avoid this issue, Leviathan’s allocator
pads objects to the next power-of-two size (see Fig. 8b).

Large objects. Objects larger than a cache line reside on
multiple banks because consecutive cache lines typically map
to distinct banks [87]. Mapping such objects to a single bank
is impossible to achieve in software alone. Leviathan solves
this problem by modifying the LLC’s bank-index function to
ignore LSBs of an address, depending on the object size, in
addition to padding as described above. For example, for an
object that is four cache lines in size, ignoring two (log(4) = 2)
LSBs will map all lines of the object to the same bank.

Memory compaction. Padding causes fragmentation that wastes
memory. Our insight is that padding matters for NDC in the
cache, but is unnecessary in memory. Leviathan thus aligns
objects to cache lines in the cache, but packs them densely in
memory to avoid fragmentation.

Leviathan uses a one-to-one translation between cache
address and memory address, similar to a phantom address
or memory overlay [18, 66, 68]. The translation is a simple
computation which only requires the object size and array base
address both for cache and memory (see Fig. 14). Such dynamic
padding is impossible in software alone because software has
no control over the cache-to-memory interface.

This design requires contiguous address ranges in both
cache and memory. Accordingly, Leviathan’s allocator is pool-
based and allocates from a large, contiguous physical memory
range. Alternatively, one could add an additional page-level
translation layer between the LLC and memory at some
additional overhead and complexity [68].

B. NDC paradigms in Leviathan

1) Task offload & long-lived NDC
The first NDC paradigms we discuss are task offload and

long-lived workloads. We observe that, although their usage
and underlying hardware can differ, the software interface is
essentially the same [11]. They both involve a core or action
explicitly invoking another action, be it short- or long-lived.
Accordingly, we group both paradigms into a single interface
with options to distinguish the aforementioned differences.

1 class A: # example actor
2 U f(...) # action 1
3 V g(...) # action 2
4
5 # invoke creates a future, holding return value
6 A* a = Allocator <A>::allocate()
7 Future<U> u = invoke a->f(...) # location is dynamic
8 Future<V> v = invoke[REMOTE] a->g(...) # vs. static

Fig. 9: Leviathan’s task offload actor interface.

Invoking tasks. Offloaded tasks operate on an object, which is
expressed in Leviathan as actions on an actor. The application
first allocates an actor and triggers an action using the invoke
keyword (see Fig. 9), similarly to Livia [47]. In the figure,
invoke offloads the method f to execute near the actor a,
returning a Future<U> that is filled when the task completes.

Offloaded tasks can take any number of arguments and
return any type, including void (no return value). The optional
[location] parameter indicates in which level of cache hierarchy
the task should execute. There are three options:
• LOCAL: The invoker’s local engine.
• REMOTE: The engine near the object’s LLC bank.
• DYNAMIC (default): Leviathan probes down the cache

hierarchy to locate the object, and executes the task nearby.
The user can also indicate a task wants EXCLUSIVE (i.e., write)
permissions as hint to DYNAMIC scheduling.

Offloaded tasks can themselves invoke further tasks in
continuation-passing style, eventually sending a single value
back to the original caller using return (which the compiler
translates into executing send on the future.

2) Data-triggered actions
Data-triggered NDC interposes on cache misses and evictions

to perform application-specific handling of the data being
moved. As prior work identified [66], letting software handle
insertions and evictions (instead of fetching from or evicting
to the next level of the hierarchy) unlocks many NDC
optimizations that otherwise require custom hardware. This
“phantom” data only resides in cache and is not backed by off-
chip memory [18, 66], since it is constructed when filling
a cache line and destructed when evicting the cache line.
Accordingly, in Leviathan, the actors are the phantom data
themselves, and the actions are constructors and destructors
(Fig. 11), which are invoked implicitly by the cache controller.

For example, in Leviathan’s implementation of PHI
(Sec. IV-B), the actor’s data is initialized with zero on a cache
miss and conditionally logged or written back to memory
on a cache eviction. Later, in Sec. VIII-A, we will show a
data-triggered constructor for near-cache data decompression.
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# Implemented by Leviathan
# Hidden from app programmer
T::T(Morph<T>* view):
    bufferEntry = view->buffer |
            (this & view->mask)
    this->data = *bufferEntry

# Stream generator
# Written by app programmer
void genStream():
    while True:
        nextObject = ...
        push(nextObject)

# Regular thread
# Written by app programmer
Stream<T> stream(bufferSize)

while True:   
    Future<T> future = stream.next()
    nextObject = future.wait()
    processObject(nextObject)

Phantom 
stream

Circular 
buffer

Cache EngineCore

Consumer
Producer

(long-lived)

Actor constructor
(data-triggered)

Load

Pop

Copy

Push

Fig. 10: Leviathan supports streaming through a combination of long-lived and data-triggered NDC. The programmer implements
the producer (long-lived NDC thread) and consumer (regular thread), while Leviathan’s API handles the data-triggered thread.

1 class A: # example actor
2 # actions
3 A(Morph<A>* view) # constructor
4 ~A(Morph<A>* view, bool isDirty) # destructor
5
6 class Morph<T>: # T is an actor type
7 TPadded* actors # base address of padded actors
8 int size # number of actors
9 Morph<T>[] views # per-engine local state

10
11 T& getActor(int offset) # for use by cores
12 int getOffset(T* actor) # for use by actions
13
14 Morph<T>* register(Type morphType , CacheLevel level,
15 int numActors)
16 void unregister(Morph<T>* morph)

Fig. 11: Leviathan’s data-triggered actor interface.

Registration. Data-triggered functionality is encapsulated in
a Morph object, which gathers state for an address range of
phantom actors. Applications register a Morph to allocate an
address range for the actors’ phantom data. Actors are allocated
via Leviathan’s Allocator to maintain intra-bank locality. Since
a Morph’s address range may span LLC banks, each engine
has a separate view (i.e., copy) of the Morph, which may
contain engine-local state for actions running on that engine.

Actions. The two data-triggered actions are an actor’s con-
structor and destructor (similar to täkō’s onMiss and onEvic-
tion/onWriteback [66]), triggered on insertions/evictions at
the registered CacheLevel. Both actions are provided a pointer
to the engine’s Morph::view. The destructor is also passed a
boolean denoting whether the cache line(s) containing the actor
is clean or dirty. The major advantage over prior work [66]
is that code can be much simpler because actions execute on
objects, not cache lines. The application just needs to handle
construction and deconstruction of single objects, vs. worrying
about layout and alignment of data within cache lines.

3) Streaming

Leviathan’s streaming interface takes inspiration from de-
coupled streaming accelerators in which a near-data thread
pushes data to a core [51, 79–81, 86]. But, unlike prior work,
Leviathan is not restricted to a specific data size for stream
entries, and streams can execute arbitrary logic for any desired
pattern (vs. pre-defined affine or indirect patterns).

Streams are essentially long-lived NDC threads, but they are

so ubiquitous and their communication pattern with cores so
regular that it is worth treating them as a separate paradigm with
a custom interface and architectural support. In fact, Leviathan’s
stream implementation uses both long-lived and data-triggered
paradigms under the hood.

Fig. 10 demonstrates how Leviathan implements streaming.
The crux of the stream is a long-lived thread on an engine
(“Producer”) that pushes new entries onto a circular buffer
in shared memory. Consuming the stream, however, involves
data-triggered actions (“Actor constructor”) to copy the stream
into a phantom address space, where it can be consumed by
an application thread on a core (“Consumer”). This approach
simplifies stream consumption because (i) the core merely
issues sequential loads, which are prefetchable and involve
very regular control, and (ii) the cache controller can easily
stall phantom loads if the core runs past the end of the stream.
Importantly, Leviathan’s interface hides all the data-triggered
details from the application, exposing only a simple Future-
based API to consume stream entries.

1 class Stream<T> extends Morph<T>: # base class
2 # Consumer interface
3 Stream<T>(int bufferSize)
4 Future<T> next() # consume stream
5 void terminate()
6
7 # Producer interface
8 void genStream() # action: generate stream
9 void push(T object) # called by genStream , blocks

10 # when the buffer is full

Fig. 12: Leviathan’s stream actor interface.

Initialization. A stream is initialized by specifying the object
type and the size of the stream buffer (Fig. 12). The buffer is
a circular queue in shared memory that contains objects, using
the Leviathan allocator.
Producer. Data is pushed onto the stream by a long-lived thread,
genStream, running on the tile’s local engine. genStream calls
push, a blocking function, to push onto the stream buffer. When
the buffer is full, push blocks until the core consumes an entry.
Consumer. next provides a Future<T> which will contain
the next stream entry when available. Under the hood, next
performs two actions: (i) initializes the Future<T> with the
next entry and (ii) pops the entry off the stream. To fill the
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Future<T>, next loads from a phantom address range. The load
causes T’s data-triggered constructor to read from the stream
buffer, which blocks if empty. After the load is issued, next
pops the entry off the stream by incrementing the core’s stream
head pointer and sends a message to the engine when the head
pointer has incremented to a new cache line, unblocking push
to allow the producer to continue.

4) Leviathan supports interaction across paradigms
One of Leviathan’s major strengths is that it allows multiple

NDC paradigms to directly interact with each other. We already
demonstrated an example with PHI [52], which combines task
offload with data-triggered actions (Sec. IV). It is possible
to further combine PHI with streaming by decoupling the
graph traversal from the cores to improve cache locality
(see Sec. VIII-C). And Leviathan’s streams themselves are
implemented through a combination of long-lived workloads
and data-triggered actions. Leviathan is the first system to
support all paradigms, and its interface is carefully designed
to enable interaction across paradigms.

VI. LEVIATHAN ARCHITECTURE

Leviathan’s hardware support includes a near-cache engine
for executing each NDC paradigm’s actions along with core,
cache, and memory-controller modifications to assist in both
executing actions at the right time and place, and managing
object placement throughout the memory hierarchy.

A. Shared infrastructure

1) Near-cache engines

rTLB

Task-offload 
scheduler

Programmable 
compute logic

Engine

Execute action

Task-context 
buffer

L1d

TLB

Data-triggered 
scheduler

Stream 
scheduler

Fig. 13: Each near-cache engine
contains programmable compute
to execute actions, a task context
for each running action, sched-
ulers for each NDC paradigm,
and an L1d, TLB, and rTLB.

Similar to recent NDC ar-
chitectures [6, 47, 55, 66, 81,
90], Leviathan extends a base-
line multicore processor with
near-cache engines (Fig. 13).
The compute logic, which
can be any programmable
resource (e.g., core, FPGA,
dataflow fabric), executes all
application-provided NDC ac-
tions. We evaluate Leviathan
with dataflow fabrics due to
their high performance-per-
area on short, repeated func-
tions [66]. The L1d and TLB
give engines coherent access to the shared memory space.

Engine L1ds are implemented using clustered coherence
within each tile to avoid increasing the LLC’s directory
state [16, 27, 45, 49]. The engine L1d and L2 on the same
tile both snoop on coherence traffic within the tile so that they
look like one combined cache to the LLC directory.

The rTLB (reverse TLB) translates cached physical addresses
back to virtual addresses, and it is needed specifically for
data-triggered actions. Cache insertions and evictions trigger
the actions, but whereas the caches operate on physical
addresses, actions are user-space functions that operate on

Padded 96B objects in cache

Cache offset

Requested cache line

Cache 
layout

Object offset

DRAM 
layout

Compressed 96B objects in DRAM

DRAM offset Object offset

0 64 128 192 256

0 64 128 192 256

DRAM line 
needed

Fig. 14: Leviathan pads objects in the cache but stores them
compressed in DRAM. Simple computation translates between
the cache and DRAM addresses for an object.

virtual addresses. Leviathan’s engines require an object’s virtual
address before invoking its constructor or destructor.

Finally, a task-context buffer stores local state for all
executing actions. To prevent deadlock, there must always
be at least one task context not reserved by an offloaded task.
Otherwise, all tasks might be waiting for a data-triggered
constructor to execute, but the constructor is waiting for a free
context. In our evaluation, we evenly split contexts between
offloaded and data-triggered actions.

2) Support for Futures
The Future::send function communicates a result from a

near-data task to the thread waiting on the future through a
store-update instruction [30, 47]. store-update, which executes
on an engine, sends a message containing the future pointer
and value over the NoC to the waiting thread. The message
instructs the thread to perform the store itself so that the
result becomes immediately available without waiting for any
additional coherence traffic.

3) Support for data mapping and packing
There are three main hardware mechanisms in support of

Leviathan’s data management: LLC object mapping, DRAM
object compaction, and a memory controller cache.
LLC object mapping. As discussed in Sec. V-A3, it is important
for objects larger than a cache line to map entirely to the same
LLC bank. Thus, Leviathan modifies the input to the index
function such that every cache line of an object provides the
same input. This is accomplished by zeroing out the LSBs of
the address that equate to the object offset (e.g., for objects
spanning two cache lines, zeroing out one LSB is sufficient).

In our evaluation, Leviathan supports objects up to four
cache lines in size (see Sec. VI-C), so two bits are needed
to indicate the number of LSBs that should be ignored. Page
table entries and L2 tags are augmented with these two bits,
which are passed along with cache requests up to the LLC.
DRAM object compaction. Although we pad objects in the
cache to improve locality, we do not want to waste DRAM
capacity. Prior NDCs required software to manually pad data,
leading to an unattractive tradeoff between locality and memory
fragmentation. However, since Leviathan has full control over
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TABLE III: Per-paradigm microarchitecture support across the
system.

Paradigm Core Cache Engine

Task offload invoke instr & buf N/A DYNAMIC scheduling
Data-triggered flush instr, TLB bits tag bits actor buffer, vtable map
Streaming pop instr N/A push instr, stream metadata

data management, it can eliminate DRAM fragmentation with
minor hardware support, invisibly to applications.

On an LLC miss or writeback, the LLC controller checks
a small translation buffer to determine if the address needs
translating. Fig. 14 shows the breakdown for determining the
DRAM address of an object based on its cache address. Since
all objects of a given type are addressed contiguously both
in the cache and DRAM (see Sec. V-A3), the translation is
simply a matter of calculating offsets, which adds no latency by
running in parallel with the LLC tag lookup. Each translation
buffer entry contains the cache address base and bound, DRAM
address base, and object size, totaling 25 B.
Memory controller cache. Because we store objects compacted
in DRAM, lines fetched from DRAM will frequently contain
portions of multiple objects. For example, see the second
DRAM line in Fig. 14. When an application iterates through
objects sequentially, loading the second and third cache lines
will both incur a memory access to the same DRAM line. To
alleviate these excess DRAM accesses, we place a small FIFO
cache (32 lines) at each memory controller. This small cache
can reduce DRAM accesses by up to ≈ 3×.

B. Support for NDC paradigms

Table III breaks down the microarchitecture additions that
support each paradigm, which are explained as follows.

1) Task offload
invoke. A new ISA instruction corresponding to the invoke
function is added to the cores. If the location is designated
as LOCAL, then the core sends a message to the engine on
the local tile; if it is REMOTE, then the core maps the object
pointer to its LLC bank and sends a message to its engine.

If the location is DYNAMIC, then invoke dynamically locates
the actor in the cache hierarchy [47]. invoke first probes the
L1D and executes the action locally if the data is cached.
Otherwise, invoke sends a packet containing a data pointer
(actor), function pointer (action), flags, and arguments to the
local engine, whose task-offload scheduler checks whether the
actor is cached in the local L2. If so, the L2 engine executes the
action, otherwise it forwards the packet to the actor’s LLC bank.
If the invoke has the EXCLUSIVE flag, then the LLC engine
checks whether another L2 already has exclusive permissions
in the directory, and forwards the packet to the remote L2 if
so. Otherwise, the LLC engine executes the action.
Backpressure. Each core contains a small “invoke buffer” to
apply backpressure when cores offload tasks faster than they
can execute. The invoke buffer is similar to a store buffer:
task-offload requests first enter the invoke buffer and drain to
engines. If a task-offload request arrives at an engine with no
space in its task-context buffer, the engine NACKs the invoke,

spilling the task back to the core [47]. Otherwise, the engine
ACKs the request, and it is removed from the invoke buffer.
Finally, invoke instructions cannot commit in the core until
there is space in the invoke buffer. However, when offloaded
tasks include a Future, the invoke buffer is skipped because
waiting on futures generally provides sufficient backpressure.

Migrating data. In order to allow objects to settle at their
natural location in the cache hierarchy, whenever a DYNAMIC
task would be executed remotely, the scheduler will instead
with small probability (1/32) execute locally to pull the data up
the hierarchy. This allows objects with high temporal locality
to gradually move to the private caches.

2) Data-triggered actions

Data-triggered actions are executed when and where data
moves, so most of the changes are in the cache controllers.
The data-triggered scheduler in the engine manages a buffer
containing the actors with pending actions, since the actors
cannot be accessible by any other threads during that time.
The scheduler also contains a small cache that maps address
ranges to their associated actions, i.e., the Morph’s vtable.

Core modifications. One new flush ISA instruction is required
for sending a message to the caches to flush the objects in a
Morph’s address range when unregistered. Additionally, two
extra bits are added to TLB entries to indicate (i) whether a
Morph is registered on the data, and (ii) if so, whether the
location is L2 or LLC.

Cache modifications. Cache requests are augmented with the
two TLB bits indicating if a cache miss should trigger the
data’s constructor at the L2 or LLC, respectively. The L2 and
LLC tags are augmented with one extra bit to indicate whether
the destructor should trigger on eviction.

With this extra information, the cache controller triggers
actions when data is inserted or evicted. For small objects, the
scheduler executes the actions on all the objects within the
line in parallel. For large objects, only one action is triggered,
which inserts (or evicts) multiple lines at once. Construction
inserts multiple lines to fit the entire object, and destruction
evicts all lines corresponding to the object.

3) Streams

As discussed in Sec. V-B3, whereas the stream’s data is
stored in a circular buffer in shared memory, the core reads
from the stream by accessing a contiguous phantom address
range that maps to the buffer through data-triggered actions.
Managing the stream and buffer involves support at both the
core (consumer) and engine (producer).

Core modifications. Streams require a new ISA instruction
to pop the stream in Stream::next. pop increments a register
containing the head pointer for the phantom stream. When the
head pointer increments to a new cache line, it sends a request
(a new message type) to the local engine (where the stream
is generated) to bump the stream’s head pointer forward. The
request also invalidates the old stream head at the L2 since it
will not be used anymore.
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TABLE IV: Hardware overhead (state per LLC bank).

LLC tags 8K lines × 3 bits = 3 KB
LLC translation buffer 8 entries × 25 B = 200 B

Engine L1d, TLB, rTLB 8 KB + 2 KB + 2 KB = 12 KB
Data-triggered buffer 16 objects × 256 B = 4 KB

Dataflow fabric [66] 13.6 KB

Total per LLC bank 32.8 KB / 512 KB = 6.4%

Engine stream scheduler. For each active stream, the engine
needs to track the buffer size and phantom head/tail pointers.
The tail pointer is used to stall the core if it loads data after the
tail (i.e., stream entries not yet pushed), and the head pointer
is used to NACK prefetches and throw exceptions on loads
to data before the head (i.e., stream entries already popped).
When the core sends a pop message, the head is incremented,
and, if an NDC action is blocked on push, it is unblocked.
Deadlock prevention. Out-of-order cores must be careful to
avoid deadlock with streams. Speculatively reordered loads
could reserve all L1 MSHRs, without any load able to proceed
if they all are past the end of the currently generated stream.
This condition is rare, but possible in principle. To prevent
this, systems could NACK speculative loads to addresses past
the end of the current stream buffer, and re-execute them on
commit, when they must point to the current stream head.

C. Handling very large objects

Leviathan can only support objects up to a microarchitec-
turally defined size, as it is impractical to support individual
objects of many KBs, MBs, or GBs with lightweight hardware
extensions. (Supporting larger objects requires larger buffers
and metadata state.) It is also impossible to preserve the benefits
of near-cache NDC as object sizes continue to scale.

Without requiring any changes to the programming interface,
Leviathan offers a functionally correct fallback implementation
of each NDC paradigm for arbitrary object sizes. Task offload-
ing works like normal, except the allocator just resorts to malloc,
so objects are spread across LLC banks and padded in DRAM.
For data-triggered actions, all constructors are triggered on
the core when a page of objects is paged in, and destructors
are triggered on the core when paged out. For streams, the
producer and consumer are spawned as conventional threads
with a message-passing queue between them.

In our evaluation, we present hardware overheads with
support for up to 256 B objects (i.e., four cache lines), which
is more than sufficient for our case studies.

D. Putting it all together

Leviathan adds relatively small area overheads to a baseline
multicore. The total per-tile storage cost, when modeling a
dataflow fabric with parameters from prior work [66], totals
32.8 KB, or 6.4% compared to the data array of an LLC bank
(Table IV). This is similar to recent work [53, 60, 66, 83].

Importantly, Leviathan’s hardware additions do not impact
the performance of non-NDC workloads. We consciously
designed Leviathan to be minimally disruptive to the baseline
system and have negligible impact on non-NDC workloads

TABLE V: System parameters in our experimental evaluation.

Cores 16 cores, x86-64 ISA, 2.4 GHz, OOO Skylake
µarch [3], 4-entry invoke buffer

Engines
16 engines, dataflow fabric, 15 int FUs (1-cycle
latency), 10 mem FUs, 8 KB L1d, 256-entry rTLB,
32 thread contexts

L1 32 KB, 8-way set-assoc, split data and instr. caches

L2 128 KB, 8-way set-assoc, 2-cycle tag, 4-cycle data
array, tr̃rîp repl. [66], strided prefetcher

LLC 8 MB (512 KB per tile), 16-way set-assoc, 3-cycle
tag, 5-cycle data array, inclusive, tr̃rîp repl. [66]

NoC mesh, 128-bit flits and links, 2/1-cycle router/link
delay

Memory 4 controllers, 100-cycle latency, 11.8 GB/s per
controller, 32 entry FIFO cache

by leaving the underlying cache hierarchy largely unchanged.
An early iteration of Leviathan involved radical changes
to the hierarchy, where caches compactly stored objects
without any padding to avoid wasting cache space. While
this design improved cache utilization, the amount of changes
to a traditional cache hierarchy, and potential impact on non-
NDC workloads, did not seem worth the NDC benefits. We
instead opted for a design that provides large benefits to NDC
workloads without negatively impacting non-NDC workloads.

VII. EXPERIMENTAL METHODOLOGY

Simulation framework. We evaluate Leviathan in execution-
driven microarchitectural simulation, using the same simulation
infrastructure as recent NDC work [47, 66]. The simulator is
based on SwarmSim [36], with extensive modifications to
support cycle-level timing throughout the memory hierarchy
as well as Leviathan’s interface and near-cache engines.
System parameters. Except where specified otherwise, our
system parameters are given in Table V. We model a tiled
multicore system with 16 cores connected in a mesh on-chip
network. Each tile contains a conventional out-of-order core
(modeled after Intel Skylake), one bank of the shared LLC,
and Leviathan engines (to ease implementation, our simulator
models engines at both the L2 and LLC bank). Sec. IX varies
these parameters and shows that Leviathan is effective across
a variety of system configurations.

We model the near-cache engine as a dataflow fabric of
processing elements (PE), where each PE can execute one
instruction per cycle. The engines contain a 5 × 5 dataflow
fabric (15 integer PEs and 10 memory PEs) with 1-cycle PE
latency. All NDC systems are evaluated with single-issue PEs
in the engines to compare systems with iso-compute resources.
For simulation convenience, instructions are mapped onto a
specific PE when they first execute, but one could compile
code statically [73, 83]. Once mapped, instructions execute
whenever all inputs are available. We also evaluate an idealized
engine with unlimited, 0-cycle latency and energy-free PEs;
i.e., latency is only affected by memory latency and data
dependencies.
Metrics. We present speedup and dynamic execution en-
ergy. Core, cache, memory, and NoC energy parameters are

11



1 class Decompressor extends Leviathan::Morph<Pixel >:
2 uint16* bases[3]
3 uint8* deltas[3]
4
5 # Actor with data (colors) and an action (constructor)
6 class Pixel: # Leviathan is agnostic to object size
7 uint16 colors[3] # 3 uints do not divide cache line
8
9 Pixel(Decompressor* decomp): # action: constructor

10 idx = decomp->getOffset(this)
11 bases = decomp->bases
12 deltas = decomp->deltas
13
14 for i in range(len(colors)):
15 base = bases[i][idx >> 3] # 1 base per 8 pixels
16 delta = deltas[i][idx]
17 mantissa = delta & 0b1111
18 exponent = delta >> 4
19 colors[i] = base + (mantissa << exponent)

Fig. 15: Leviathan uses data-triggered actions to decompress
objects when their data is loaded by the core.

from [75], while engine energy parameters are from [60].
Additional metrics are also provided to breakdown performance
benefits when helpful.

VIII. EVALUATION — CASE STUDIES

Leviathan is a polymorphic cache hierarchy that unifies prior
NDC paradigms without exposing microarchitectural details to
the programmer. We now evaluate three more applications, in
addition to PHI in Sec. IV, to demonstrate:
• Leviathan provides strong performance and energy benefits

across NDC paradigms.
• Leviathan’s actor-based interface is intuitive to program

and provides benefits across object sizes.
• Leviathan scales well across system and data sizes (Sec. IX)

and is close to an idealized design.

A. Near-cache data transformation

Prior work on hardware compression has shown significant
memory and cache savings [8, 24, 56, 57, 64, 77]. But prior
designs fix the (de)compression mechanism in hardware, so
there is no flexibility of scheme or data sizes. In this study,
we analyze Leviathan’s ability to transform data using data-
triggered actions to decompress objects of arbitrary size as
they are brought into a core’s private cache.
Decompression with Leviathan. Fig. 15 shows the code for a
data-triggered NDC application that uses a Morph to decom-
press data stored in a lossy, compressed format in memory as
a base plus offset, similar to [57]. The application registers the
Morph at the L2 (not shown). The actor’s constructor is then
triggered when each object is accessed by the core.

To decompress data of different types, the programmer imple-
ments the constructor to perform the appropriate decompression.
Prior work requires decompressed data to evenly fit into cache
lines, restricting the programmer to a limited subset of data
types and requiring careful alignment and padding. By contrast,
Leviathan simply asks the programmer to provide the data type
of interest (see line 6). Fig. 15 decompresses a 6 B Pixel, which
does not evenly divide a cache line.
Application. Leviathan improves performance, saves energy,
and reduces redundant work even on objects that do not evenly
divide a cache line. We analyze an application which computes
an average over an array of 16 K decompressed 6 B Pixels
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Fig. 16: Results when decompressing 6B objects. Leviathan
improves performance by 2.4× and reduces energy by 65%.

(Fig. 15). The array is indexed using a Zipfian distribution [17]
of 32 K accesses.

We evaluate a baseline software implementation that decom-
presses on every access, an NDC version that uses task offload
(OL) to decompress at the local engine, and Leviathan with and
without padding, which accesses decompressed data through
the Morph in Fig. 15. The results without padding are similar
to täkō [66], which does not provide any data-layout support
for the programmer. Results are shown in Fig. 16.
Observation: Not all NDC paradigms are right for every
application. Although task-offload performs decompressions at
the local engine like data-triggered NDC, it does not retain the
decompressed data in the private cache. In fact, it is actually
worse by 2.8× because decompressing at the L2 loses locality
in the L1s, without reducing overall work.
Observation: Padding is necessary. Data-triggered actions do
not work without padding. Since 6 B does not evenly divide
a 64 B cache line, lines would contain partial objects, but
constructors cannot initialize a portion of an object. This is
the outcome of prior work such as täkō [66] that do not
provide implicit data-layout support, forcing the programmer
to explicitly account for the system’s microarchitecture.
Observation: Leviathan boosts performance. Leviathan ad-
dresses both issues while significantly outperforming the
baseline. Leviathan improves performance by 2.4× and reduces
energy by 65% by decompressing data while it traverses the
cache hierarchy, allowing the core to reuse decompressed data
in the L1. Moreover, Leviathan comes within 1.6% speedup
and 1.5% energy of ideal.

B. Hash table lookups via task offload
Hash tables are a popular data structure due to theoretical

O(1) lookup time. However, practical lookup time is determined
by collision resolution because multiple keys may hash to the
same value [50]. Collisions are commonly resolved via a linked-
list per hash bucket. Unfortunately, linked lists are notoriously
slow due to their sequential, pointer-chasing search. Prior work
offloads lookups into the memory hierarchy, avoiding constant
round-trips between core and cache.
Pointer chasing of hash-table buckets with Leviathan. Fig. 17
shows the code for an application that uses task offloading
for hash-table pointer chasing with Leviathan. Lines 8-13
implement an offloaded task that compares a single hash-table
node with a key, near the node’s location. If the node contains
the key, a Future is notified that the key was found (by returning
the node’s value). Otherwise, if the node is not at the end of
the list, the task invokes another Lookup task on the next node.
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1 # Actor with data and an action (Lookup)
2 class Node:
3 int64 key, value
4 int64 metadata[N] # large objects are fine
5 Node* next
6 # int64 padding[LINE_SIZE -3-N] # no padding needed
7
8 int64 Lookup(key): # action: runs near ‘‘this’’ Node
9 if this->key == key:

10 return value
11 if next == nullptr:
12 return -1
13 return invoke next->Lookup(key)

Fig. 17: Leviathan uses task offloading to traverse linked nodes
in a hash-table bucket, without concern for node size.
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Fig. 18: Results when performing hash-table lookups across differ-
ent object sizes with a uniform distribution over keys. Leviathan
performs well across object sizes, improving performance up to
2.0× and reducing energy by up to 77%.

Each node must reside entirely within a single tile to maintain
the locality benefits of NDC (see Fig. 8). As a result, prior
work required the application to manually pad and align nodes
to cache lines, an unnecessary exposure of microarchitecture to
programmers. Instead, with Leviathan, the application simply
allocates each node using Leviathan’s allocator (not shown)
without concern for object size or alignment. Prior NDCs
cannot provide spatial locality for nodes larger than a cache
line, whereas Leviathan’s LLC mapping mechanism easily
maps large objects to the same cache bank (Sec. VI-A3).
Application. We evaluate an application with 16 threads each
performing 1 K hash-table lookups across different object sizes
(24 B, 64 B, and 128 B) by varying line 4 in Fig. 17. We
initialize a hash table with an average of 32 nodes per bucket
whose (padded) size totals 4 MB. To perform a lookup, we
generate a key from a uniform distribution, hash the key, and
scan the corresponding bucket. (Results are similar with a
Zipfian [17] distribution.) We evaluate a baseline software
implementation and Leviathan, with and without Leviathan’s
padding and LLC object mapping support. The results without
padding and mapping are similar to Livia [47], which does not
provide any data-layout support for the programmer.
Observation: Leviathan performs well across object sizes.
Leviathan performs similarly across all object sizes (Fig. 18),
achieving up to 2.0× speedup and 77% energy savings. A
majority of the benefits come from reducing NoC traffic by
offloading a chain of tasks within the LLC, instead of constant
round-trips to the caches to fetch each Node. The buckets fit
in the LLC, but not L1d or L2, so almost all lookups in the
baseline require pulling data from the LLC.
Observation: Padding improves object locality. Without
padding, 24 B performance is reduced to 1.5× due to extra
NoC traffic, as many offloaded tasks have only part of the

1 struct Edge { uint src, dst } # obj. can be anything
2
3 # Actor with an action (genStream)
4 class LeviathanHATS extends Leviathan::Stream<Edge>:
5 Stack bdfs = {Vertex* vec, uint top}
6
7 void genStream(): # action: fill stream
8 while True:
9 if bdfs.top == 0:

10 root = G.getNextRootVertex()
11 if root == INVALID: return
12 bdfs.vec[++bdfs.top] = root
13 active[root++] = false
14
15 dst = bdfs.vec[bdfs.top]
16 while dst.nextNeigh < dst.inDegree:
17 src = dst.neighbors[dst.nextNeigh++]
18 push(Edge(src, dst)) # stalls when full
19
20 if bdfs.top < depth and !active[src]:
21 bdfs.vec[++bdfs.top] = src
22 active[src] = false
23
24 --bdfs.top
25
26 # Main thread reads off stream
27 for range(G.numEdges):
28 # Get future for next edge and process when ready
29 Future<Edge> future = stream.next()
30 processEdge(future.wait())

Fig. 19: Leviathan implements HATS with streams.

Node locally.
Observation: LLC object mapping improves object locality.
Without LLC mapping, 128 B performance is reduced to 0.91×
(worse than the baseline) because nearly all offloaded tasks
need to fetch part of its node remotely. Note that prior work
does not support objects larger than a cache line.
Leviathan reduces memory fragmentation. Another quanti-
tative benefit of Leviathan is compact storage in DRAM for
nodes padded in the cache. Specifically, padding the 24 B nodes
to 32 B would cause 25% memory fragmentation in prior work.
Leviathan performs padding in-cache and compacts objects in
DRAM, getting the best of both worlds.

C. Decoupled graph traversal via streaming

Lastly, we demonstrate streaming on HATS [51], a recent
optimization for locality in graphs. HATS observed that, without
expensive pre-processing, it is inefficient to process the edges
in the order they are laid out in memory. Many graphs exhibit
strong community structure [12, 46], so it is much better
to process graphs one community at a time. A bounded,
depth-first search (BDFS) is a simple traversal order that
significantly improves locality. The challenge is that BDFS
executes inefficiently on cores due to unpredictable control
flow and coupling of the graph traversal with vertex processing.
Additionally, BDFS is infeasible for many prior streaming NDC
designs because it cannot be easily reduced to a combination
of simple affine or indirect patterns.
BDFS streaming with Leviathan. Fig. 19 shows how Leviathan
implements HATS using the streaming interface. The applica-
tion registers a Stream with an Edge type, without worrying
about padding, alignment, or size of the Edge. genStream
is populated with the BDFS algorithm, which continually
generates Edges and pushes them onto the stream. The main
thread running on the core processes edges with next.
Application. We compare baseline PageRank, software BDFS,
BDFS in täkō, and Leviathan. täkō [66] only supports data-
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Fig. 20: HATS results for one iteration of PageRank on uk-2002
graph [21]. Leviathan improves performance by 1.7× and reduces
energy by 26% vs. the software baseline.
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Fig. 21: HATS performance breakdown. Left: DRAM accesses
split by PageRank phase. Middle: core branch mispredictions
per graph edge processed. Right: average engine instructions per
edge.

triggered actions and implements HATS by having constructors
on cache misses trigger BDFS traversal (instead of stream
pushing). The täkō version of BDFS is more complex and
has unintuitive corner cases; e.g., it cannot guarantee that the
stream is generated sequentially, since it depends on the order
of misses generated by the core. Fig. 20 presents speedup and
energy results for one iteration of PageRank.
Observation: Leviathan outperforms prior designs. Whereas
software BDFS and täkō achieve modest speedups of 1.2×
and 1.4×, Leviathan achieves 1.7× speedup (nearly identical
to ideal). Additionally, Leviathan reduces energy by 26%.

This speedup is due to (i) better cache locality; (ii) regu-
larizing control flow on the core; (iii) an efficient push-based
streaming interface; and (iv) decoupling of stream producer and
consumer. Fig. 21 quantifies the first three points. All versions
incur the same number of memory accesses during the vertex
phase, but the versions that execute the BDFS traversal reduce
total accesses by 40%. täkō and Leviathan both eliminate
branch mispredictions by turning the complex BDFS traversal
into a simple loop over a sequential array.
Observation: Dedicated streaming support matters. täkō’s
pseudo-streaming requires more engine instructions per edge
generated. Since täkō’s implementation triggers a new action to
resume the BDFS traversal every eight edges (one cache line),
it must “reinitialize” the BDFS stack each time. In contrast,
Leviathan’s stream is a continually running action, reducing
average instructions per edge. Leviathan also lets the stream
run far ahead, whereas täkō streams are implicitly triggered
by loads and thus dependent on the consumer.

IX. EVALUATION — SENSITIVITY STUDIES

Invoke buffer. PHI is the most sensitive to the invoke buffer
because it offloads tasks rapidly and does not wait for them to
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Fig. 22: Sensitivity to invoke
buffer with PHI.
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complete. Fig. 22 evaluates Leviathan across buffer sizes. With
one or two entries, Leviathan slows due to queueing effects
causing backpressure, but performance plateaus after four.
Stream buffer. Fig. 23 evaluates HATS’ performance across
stream-buffer sizes. Performance plateaus at 64 entries. Note
that the stream buffer resides in memory, not a separate
hardware structure, so its overhead is negligible.
Input size. Fig. 24 evaluates hash-table lookups across total
hash-table size. As long as most of the data fits in the LLC,
Leviathan performs well. Once the data is larger than the LLC,
Leviathan’s performance drops as NoC savings are swamped
by DRAM latency. Future work on incorporating near-memory
engines can further improve performance for non-cache-fitting
workloads, as evidenced by prior work [31, 35, 47].
System size. Finally, Fig. 25 evaluates hash table lookups
across system sizes. Leviathan performs even better with larger
systems due to the increased NoC savings.

X. CONCLUSION

Near-data computing is essential to tackle the rising cost of
data movement. Prior work has proven that NDC yields large
gains in performance and energy efficiency. Unfortunately, prior
designs do not provide a holistic approach to NDC because
they have limited applicability and unintuitive programming
models. Leviathan overcomes these challenges by unifying
prior NDC techniques in a single, polymorphic cache hierarchy
with a simple, actor-based reactive programming interface.
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